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Project Description 
 
Efforts to prioritize conservation areas have typically relied on indices that include levels 
of endemism, species richness, and degree of threat1. However, it has long been 
recognized that measures of species richness alone may fail to capture essential 
evolutionary processes that promote and sustain diversity2-8. To avoid extinction in the 
face of climate change, populations may either move to more favorable habitat, or 
adaptively respond to changing conditions. With increasing fragmentation of formerly 
continuous habitat, dispersal to new areas may be severely limited. It is important, 
therefore, to develop ways of prioritizing regions that include not only areas with high 
species richness and where species might move, but also regions that maximize a species’ 
adaptive potential. A suitable approach to do this is to protect as much intraspecific 
morphological and genetic variation as possible, so as to increase the probability that one 
or more populations will be adapted to new climate conditions. 
 
By identifying areas within the study region that harbor higher genetic variation, we have 
determined high priority areas that may influence conservation decisions. Understanding 
how these areas may change in response to impending climate change is of paramount 
importance. We have also ensured the toolbox of methods and data analysis pipeline for 
this project will be made available for use by LCC and other land managers. Finally, we 
have developed these methods to be of general utility to regions outside the Santa Monica 
Mountains National Recreation Area. While ecological and climate factors other than 
those found to be important in Southern California are likely playing a role in other 
regions, the framework established here can be easily transferred to other model systems. 
 
Basic Approach and Scope of Work  
 
We used existing genetic9 data from 15-20 sites (depending on species) of the following 
bird and reptile species to identify areas important for conservation in the Santa Monica 
Mountains NRA: wrentit (Chamaea fasciata), western fence lizard (Sceloporus 
occidentalis), side-blotched lizard (Uta stansburiana), and western skink (Plestiodon 
skiltonianus). These species have contrasting vagilities and food niches, and occupy 
different strata of the vegetation. The species are common, with widespread distributions 
in California, although the wrentits are mostly limited to coastal chaparral habitat. All 
four species occur throughout much of the Santa Monica Mts. NRA. We used satellite 
remotely sensed and climate data, in conjunction with recently developed spatially 



	
   2	
  

explicit ecological modeling techniques10 to project genetic diversity across the 
landscape. In local to regional scale studies (with environmental layers at spatial 
resolutions of ~ 20m - 1km), environmental parameters can be used in a correlative 
approach to indirectly discern patterns of biodiversity11. Spaceborne measurements can 
provide information on primary productivity, climate, and habitat structure, factors that 
are thought to be important in determining the distribution, composition, and local 
amounts of biodiversity12-14. Recent advances in GIS technologies and spatial statistics 
have increased the predictive power of spatial analyses by refining approaches that first 
identify and quantify associations between environmental variables and 
biodiversity10,15,16. These statistical associations can then be used to project patterns of 
diversity across a landscape, resulting in continuous predictions of alpha- or beta 
diversity, even in unsampled areas. Our approach consisted of three main steps:  
 
1) Identify spatially explicit population structure across the SMMNRA  
 
2) Predict the distribution of genetic variation across the study landscape 
 
3) Project how this genetic variation is likely to change under climate change  
 
Genetic Data 
 
Genetic data used in this study consisted of genotype data taken from previous research 
in the Santa Monica Mountains National Recreation Area9. The data sets for each species 
included  geo-referenced genotypes for each sampled individual, with multiple 
individuals per location (GPS location information in UTM, datum NAD27 zone11; 
Table 1). The definition of ‘locations’ in this data set was made through an a priori 
decision based on the spatial clustering of the pitfalls arrays in the sampling sites. 
Consequently some locations included multiple pitfall arrays.  

 

Table 1: Details on genetic data; number of loci, total number of samples, number of 
locations, and range of number of samples per location. 

Species name # of 
loci 

Total # 
samples 

# of 
locations 

Samples per 
location 

Western skink (Plestiodon 
skiltonianus) 

6 225 15 5-29 

Western fence lizard (Sceloporus 
occidentalis) 

8 239 17 8-18 

Side-blotched lizard (Uta 
stansburiana) 

8 215 15 2-18 

Wrentit (Chamaea fasciata) 7 105 10 3-18 
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Environmental Data 

Environmental variables used were of two types.  First, low-resolution environmental 
data which allows for analyzing regional-scale processes, and consisted of a set of 
climate variables from the WorldClim database and satellite remotely sensed variables at 
30 arcsec resolution (Table 2). Temperature was expected to influence genetic variation 
in these species, because three out of the four study species are cold-blooded, and 
therefore in their activity highly dependent on the temperature of the surrounding 
environment. Furthermore, precipitation was expected to be important, because the Santa 
Monica Mountains are a relatively arid area. Removing highly correlated variables with 
Pearson cross-correlations > 0.9, and keeping variables that are often used or ease 
interpretation, the following climate variables were selected for further analyses: Annual 
Mean Temperature (BIO01), Mean Diurnal Temperature Range (Mean of monthly 
maximum temp minus minimum temperature; (BIO02)), Temperature Seasonality 
(standard deviation * 100; (BIO04)), Maximum Temperature of warmest Month (BIO05), 
Minimum Temperature of Coldest Month (BIO06), Annual Precipitation (BIO12), 
Precipitation Seasonality (Coefficient of Variation; (BIO15), Precipitation of Warmest 
Quarter (BIO18), and Precipitation of Coldest Quarter (BIO19).  

Second a set of remotely sensed data variables was used. These included Moderate 
Resolution Imaging Spectroradiometer (MODIS), we included the Normalized 
Difference Vegetation Index (NDVI) (calculated from the red and near infrared reflection 
of the earth’s surface) and its standard deviation (NDVIstd) as a measure of greenness 
and seasonality, as well as percent tree cover, computed from the Vegetation Continuous 
Field (VCF) for the year 2001. We used radar data from the Quick Scatterometer 
(QuickSCAT), delivering information about near-surface moisture content, and a Digital 
Elevation Model (DEM) from the Shuttle Radar Topography Mission (SRTM) at 30 arc 
second resolution. 

Table 2: List of low-resolution environmental variables used in the analysis. 

Data Record Instrument Ecological 
Attributes 

Variables Derived 

NDVI Satellite-
MODIS 

Vegetation 
Density 

NDVI mean, NDVIstd 

VCF Satellite-
MODIS 

Forest cover &  
heterogeneity  

Tree 

Scatterometer-  
Backscatter 

Satellite-
QSCAT 

Surface 
moisture 

QSCATaug 

WorldClim Station-
Network 

Bioclimatic 
variables 

BIO01, BIO02, BIO04, BIO05, 
BIO06, BIO12, BIO15, BIO18, 
BIO19 
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In addition to this lower-resolution data, we also included high-resolution (30 m) 
remotely sensed data, derived from the ASTER mission. The red (RED; band 2) and far 
infrared (FIR; band 3n) bands served as basis to compute NDVI as follows: 

NDVI = (RED – NIR) / (RED + NIR) 

Band 11 was also used, which contains temperature data that does not need further 
processing. In addition to these data sets from the ASTER layers, high-resolution 
elevation data and a tree cover data set in 30 m resolution were used as environmental 
predictors17. 

 

Table 3: List of high-resolution environmental variables used in the analysis. 

Data Record Instrument Ecological Attributes Variables 
Derived 

Light & Temperature 
bands 

Satellite-
ASTER 

Light reflection, 
Temperature 

NDVI, Temp 

DEM SRTM Elevation + Topography Elevation 

VCF Satellite-
MODIS 

Tree cover + 
heterogeneity 

Tree 

 
Finally, previous work suggested that highway 101 may act as a dispersal barrier22, 
reducing gene flow between populations. We therefore included this barrier hypothesis 
by generating a GIS rater layer where the area south of the 101 was coded as 0 and north 
of the 101 as 1. This in effect includes the 101 as a strong barrier between populations on 
opposite sides of the road.  
 
Determining Spatially Explicit Population Structure 
 
Microsatellite data was converted to pairwise distances using GenAlEx18. We analyzed 
population structure for each of the four target taxa using the program Geneland19 in the 
R computer language20 so that population structure could be determined in a spatially 
explicit manner. Genetic data was combined with location information to calculate a 
Bayesian inference of population structure. Models were run for 500,000 iterations with a 
thinning interval of 100 using all existing genetic data for each species separately. It 
should be noted here that Geneland and its inference methods do not include any 
environmental predictors. Rather, the genetic structure and geographic coordinates of 
each location’s samples are compared and used to infer the number of populations 
present in the study region, as well as the most likely membership to each one of those 
populations for every pixel within the study region. 
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Predicting Genetic Variation Across the Study Region 

Generalized Dissimilarity Modelling (GDM) is models beta-diversity across a landscape. 
Specifically, it is a matrix regression technique and predicts biotic turnover/ dissimilarity 
between sites based upon environmental dissimilarity and geographic distance. The 
advantages of GDM are that it makes few assumptions regarding the relationship between 
environment and genetic diversity and can explicitly take into account the potential 
influence of geographic distance (i.e. isolation-by-distance) on generating population 
divergence. It can also fit nonlinear relationships of environmental variables to biological 
variation by using an I-spline basis function and it provides an assessment of model 
performance is made through permutations. Additional useful information given by GDM 
is the relative importance of individual environmental variables in explaining the 
observed genetic diversity21. GDM is a two-step method: first, dissimilarities of a set of 
predictor variables are fitted to the genetic or phenotypic dissimilarities (the response 
variables). In an iterative process, predictor variables are added to and removed from the 
model, and only the variables that significantly improve the model are retained. 
Specifically, predictor variables are introduced to the model in random order and the 
variation in the response variable explained by the inclusion of that variable is compared 
to that without the variable (ΔD). Second, over many iterations the predictor variable is 
added again, but with the values randomized among sampling sites, resulting in a random 
distribution of ΔDrand. ΔD is compared to ΔDrand, based on which the predictor variable is 
either retained or dropped. Generalized dissimilarity models were run using an Avenue 
script in ArcView v 3.2 in conjunction with a SPlus v 4 script obtained from the authors 
of GDM [21]. 
 
To create spatially explicit projections of genetic variation across the landscape, all GDM 
runs consisted of 5000 randomly distributed classification training samples and 50 final 
GDM classes. As a means to contrast hypotheses regarding environmental differences, 
dispersal barriers, and geographic distance, we ran models with different sets of predictor 
variables. First, all predictor variables were entered (full model). Importance of any of 
those variables in a model would implicate its role in maintaining divergence between 
populations. To evaluate cross-correlations among predictor variables, in the remaining 
models the following subsets of the predictor variables were entered: only environmental 
variables, only geographic distance, or only the highway barrier. The percentages of the 
variation explained by each model were compared to assess which parameter set best 
explained the observed genetic variation. 
 

To estimate the sensitivity of the models to the spatial resolution of the environmental 
variables, various combinations of high- and low-resolution data were used in our 
models. These consisted of using the full high-resolution variable set as a basis and 
adding single low-resolution variables (Tree, SRTM, NDVIstd, QSCATaug) that had 
performed well in previous analyses of low-resolution layers. Subsequently, all high- and 
low- resolution variables were used to set up a full model including both resolutions. In 
addition, high-resolution data was reaggregated to generate three medium- resolution data 
sets with 150 m (Factor 5), 300 m (Factor 10) and 600 m (Factor 20) resolutions. Further 
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processing in ArcMap10 was performed on the full model results to visualize genetic 
variation for each species. 

Projecting Genetic Change Under Climate Change 

When projected onto estimated future environmental conditions, predictions of genetic 
diversity can be used to understand its spatio-temporal dynamics under various scenarios 
of changing environmental conditions. To assess the potential impact of future climate 
change on genetic diversity in our study species, we first created a model for only current 
climatic conditions (i.e. without vegetation and elevation variables), and subsequently 
projected these genotype-climate association onto predicted future climate layers from 
the IPCC 4th Assessment Report A1B climate change scenario for 2080-2090. 
Confidence intervals around climate change scenarios tend to become broader with 
predictions further into the future. Nevertheless, as the 2080-2090 predictions represent 
more extreme climate change scenarios, they were the focus of our modeling efforts 
(Models for 2050-260 were also produced, and will be made available online and by 
request). In fact, the 2080 predictions of atmospheric CO2 concentrations may be reached 
much sooner, as current emissions already exceed the trajectories of the highest 
scenarios. Thus, projections of genetic variation on the 2080-2090 climate scenarios may 
be relevant for purposes of our study. From the predictions of genetic variation under 
current and future climate, we generated a change map for each of the target taxa, 
showing the level of predicted change in genetic variation between current conditions and 
those for the period 2080-2090. 
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Results 
 
Determining Spatially Explicit Population Structure 
 
For each of the four target taxa, population structure was determined using existing 
genetic data and geographic locations. For three of the taxa (Side-blotched lizard, western 
fence lizard, and wrentit) significant population structure was observed across the study 
region, divided largely into two populations, one northern and one southern within the 
SMMNRA (Figs 1-3). In each target taxon, this split between the two populations aligned 
almost perfectly to a region north of the CA-101 Highway and a region south of this 
major freeway. Consultation with scientists at the SMMNRA and previous research9,22 
has supported the hypothesis that this freeway and others can act as major barriers to 
dispersal and gene flow of relatively low vagility species, and our results from analyses 
of population structure confirm this. 
 

 
Fig. 1. Population structure of the Side-blotched lizard (Uta stansburiana) as determined by 
Geneland. Colors represent probability of belonging to one of two populations. Although sampling 
was sparse in the southern region, these locations are more genetically similar than geographically 
closer locations north of the CA-101. 
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Fig. 2. Population structure of the western fence lizard (Sceloporus occidentalis) as determined by 
Geneland. Colors represent probability of belonging to one of two populations. Two southwest 
locations (in purple here) are more closely related to locations north of the CA-101, suggesting that 
despite acting as a clear barrier, some gene flow across the freeway may occur. 
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Fig. 3. Population structure of the wrentit (Chamaea fasciata) as determined by Geneland. Colors 
represent probability of belonging to one of two populations. Despite the ability to fly, wrentits are 
known as a low vagility species and may still be limited in dispersal by the same major barriers that 
terrestrial vertebrates encounter. 
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For the final taxon (western skink), no major barriers to dispersal were observed and the 
most likely number of populations observed was six (Fig. 4). Interestingly, locations that 
were more genetically related on either side of the CA-101 in this species corresponded 
to known underpasses or connecting corridors (several corridors in the east of the 23 
highway and in the Agoura Hills region), and could represent locations where dispersal 
and gene flow are possible. It is possible that for this species, the freeway does not 
present the same type of barrier to gene flow as in the other three species studied.  

 
Fig. 4. Population structure of the western skink (Plestiodon skiltonianus) as determined by 
Geneland. Color represents probability of belonging to one of six populations. For this species, the 
CA-101 seems to act as less of a barrier to dispersal and gene flow, particularly along the eastern 
edge of the study region. 
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Predicting Genetic Variation Across the Landscape 
 
Side-blotched lizard (Uta stansburiana) 

The most important variables explaining genetic variation in the side-blotched lizard (Uta 
stansburiana) were tree cover, surface moisture (QSCAT), vegetation cover (as measured 
by NDVI), and a mixture of temperature (bio1, bio2) and precipitation variables (bio18). 
The maximum amount of genetic deviation explained by our full model was 50.2 %, 
suggesting that much of the variation seen in neutral genetic markers can be attributed to 
differences in environmental variables across locations. In this species, only 5.2 % of the 
genetic variation was explained by geographic distance between locations, suggesting 
patterns of genetic variation do not follow simple, linear gradients.  

Table 4. Most important variables and variation explained for all GDM runs for the 
side-blotched lizard (Uta stansburiana). 
 
Resolution Predictive Variables Predicted 

Deviation [%] 

High Full Eucl 5.15 

Reaggregated Factor 5 Temp & Eucl 7.05 

Factor 10 Temp, Tree & Eucl 11.83 

Factor 20 Temp 15.15 

Mixed High + Tree Tree (low) , Eucl & Tree 16.10 

High + SRTM Eucl & Tree 9.80  

High NDVIstd Eucl, Tree & NDVIstd (low) 10.71 

High + 

QSCATaug 

QSCATaug & Tree 19.12 

High + Low QSCATaug, NDVI (low), BIO01, 

Tree (low), 101 

79.84 

Low Full QSCATaug, NDVI, BIO01, Tree, 101 79.84 

NoEnv Eucl 5.15 

NoEucl QSCATaug, NDVI, BIO01, Tree, 101 79.84 
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Fig. 5. Prediction of genetic turnover in the side-blotched lizard in Southern California based on 
GDM analyses. High genetic diversity in this species was seen along the Southern Coast, a center 
region east of highway CA-23, and a northeastern region in the Angeles National Forest.  
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Western fence lizard (Sceloporus occidentalis) 

Modeling results for the western fence lizard suggests that the majority of genetic 
variation can be explained by environmental variation, particularly by surface moisture, 
tree cover, and temperature. Our best model under the GDM framework explained nearly 
88% of the total genetic deviation across locations for this species. Importantly, 
geographic distance explained none of the genetic variation observed, again suggesting 
that population structure can likely be attributed to selection by local environmental 
conditions rather than by isolation-by-distance. 

Table 5. Most important variables and variation explained for all GDM runs for the 
western fence lizard (Sceloporus occidentalis). 

Resolution Predictive Variables Predicted Deviation 
[%] 

High Full Elevation & Temp 34.28 

Reaggregated Factor 5 Temp & Elevation 39.67 

Factor 10 Tree, Temp & Elevation 70.05 

Factor 20 Temp, Elevation & Tree 37.19 

Mixed High + Tree Tree 74.77 

High + SRTM SRTM, Temp & Tree 19.37 

High + NDVIstd Temp 20.56 

High + 
QSCATaug 

QSCATaug, Tree & 
Temp 

87.60 

High + Low Tree, BIO01 80.67 

Low Full Tree, BIO01, 101 79.70 

NoEnv -  0 

NoEucl Tree, BIO01, 101 79.70 
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Fig. 6. Prediction of genetic turnover in the western fence lizard in Southern California based on 
GDM analyses. High genetic diversity in this species was seen in four distinct regions: along the 
Southern Coast, in a center region east of highway CA-23, in a northeastern region in the Angeles 
National Forest, and along a western portion of the SMMNRA centered in the Oxnard area. 
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Western skink (Plestiodon skiltonianus) 

Results from GDM analyses for the western skink indicate that up to 45% of the genetic 
deviation in this species can be explained by environmental variables. While geographic 
distance played a role in explaining some of this variation (~8%), the most important 
variables in our model were vegetation (as determined by NDVI) and elevation.  

Table 6. Most important variables and variation explained for all GDM runs for the 
western skink (Plestiodon skiltonianus). 

Resolution Predictive Variables Predicted 
Deviation [%] 

High Full Eucl & Elevation 9.12 

Reaggregated Factor 5 Eucl & Elevation 10.60 

Factor 10 Eucl & Elevation 11.80 

Factor 20 Elevation & Eucl 19.51 

Mixed High + Tree Eucl & Elevation 9.12 

High + SRTM SRTM (low) & Eucl 22.41 

High + NDVIstd Elevation, Eucl & NDVIstd (low) 23.11 

High + QSCATaug Elevation & Eucl 21.80 

High + Low NDVI (low) , Eucl, SRTM (low) 44.63 

Low Full NDVI (low) , Eucl, SRTM (low) 44.62 

NoEnv Eucl 7.80 

NoEucl NDVI, QSCATaug, SRTM 44.62 

LCP Full Dist. Matrix, NDVI (low),  Eucl, 
SRTM (low) 

48.21 
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Fig. 7. Prediction of genetic turnover in the western skink in Southern California based on GDM 
analyses. High genetic diversity in this species was seen in four distinct regions: along the Southern 
Coast, in a center region east of highway CA-23, in a northeastern region in the Angeles National 
Forest, and along a western portion of the SMMNRA centered in the Oxnard area. 
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Wrentit (Chamaea fasciata) 

Genetic deviation in the wrentit was found to be explained by three environmental 
variables, elevation, temperature, and vegetation (Table 7). A maximum of 97.5% of 
genetic deviation was explained by our best model for this species, and models explained 
equal genetic variation even when geographic distance was excluded from analyses, 
suggesting distance alone does little to explain genetic variation in this species. 

Table 7. Most important variables and variation explained for all GDM runs for 
wrentit (Chamaea fasciata). 

Resolution Predictive Variables Predicted Deviation [%] 

High Elevation & Temp 3.81 

Reaggregated Factor 5 Elevation 1.26 

Factor 10 Elevation 0.20 

Factor 20 Elevation 1.94 

Mixed High + Tree Elevation & Temp 3.81 

High + SRTM Temp 59.46 

High + NDVIstd Temp 97.50 

High + QSCATaug Temp 59.46 

High + Low NDVIstd 71.93 

Low Full NDVIstd 69.72 

NoEnv - 0 

NoEucl NDVIstd 69.72 

LCP Full NDVIstd 71.93 
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Fig. 8. Prediction of genetic turnover in the wrentit in Southern California based on GDM analyses. 
High genetic diversity in this species was seen in four distinct regions: along the Southern Coast, in a 
center region east of highway CA-23, in a northeastern region in the Angeles National Forest, and 
along a western portion of the SMMNRA centered in the Oxnard area. 
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Identifying Current Genetic Variation Hotspots 

Examining each of the target taxa individually, we found a variety of environmental 
variables play a role in explaining genetic variation, and a range of explanatory power in 
our models (from 44.6% to 97.5%). However, geographically, several key locations were 
consistently found to harbour high genetic variation across all taxa. By examining 
predictive maps for each of our target taxa, we identified four key areas within the study 
region that represent hotspots in terms of genetic variation in these species (Fig. 9).  

Southern Coast: The first of these hotspots was identified in the southernmost region of 
the SMMNRA, in an area south of the CA-101 and centered around the Malibu area. In 
fact, much of this coastline was found to exhibit high genetic variation in all four target 
taxa. 

Central/Simi Valley: Another hotspot was identified in the center region of the 
SMMNRA, in an area divided by the CA-23 highway and including the Simi Valley at 
the eastern extent and Arroyo Vista and Moorpark on the west. Each of the four species 
demonstrated high genetic variation in this area, supporting previous findings that this 
area contains high genetic variation9. 

Northeastern/Angeles National Forest: A northern region on either side of the I-5 
highway was found to contain high genetic variation on all four target taxa. This region 
extended into the Angeles National Forest on the eastern border, and the Santa Clarita 
Woodlands Park on the western side. 

Western/Oxnard: The last of the genetic variation hotspots was identified in the western 
extent of the SMMNRA, centered in the Oxnard area. In three of the four target taxa 
analysed, this region contained a high amount of genetic variation across a relatively 
small geographic area.  
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Fig. 9. Four identified hotspots of genetic variation in the Santa Monica Mountains National 
Recreation Area. High genetic diversity is seen four distinct regions: along the Southern Coast (black 
circle), in a center region east of highway CA-23 (gray circle), in a northeastern region in the Angeles 
National Forest (purple circle), and along a western portion of the SMMNRA centered in the Oxnard 
area (red circle). Although genetic variation was low for the side-blotched lizard in this last area, the 
remaining three taxa exhibited high variation across this relatively small region. 
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Projecting Variation Change Under Climate Change 

By using the relationship between genetic variation and environmental variables under 
current climate conditions, we were then able to construct projections of how genetic 
variation may change under changing climate conditions. Results from the four target 
taxa are presented below, with general conclusions following. 

Whereas spatial patterns of genetic variation under current climate conditions are similar, 
projected changes in these patterns vary considerable among species. Projections for the 
side-blotched lizard were not possible, because a model using only current climate, 
instead of both climate and vegetation variables, did not explain any genetic variation. 
Because spatial patterns of vegetation are highly unclear under future climate conditions, 
we could, therefore, not create a future prediction for this species.  

Predicted changes for the western fence lizard are relatively uniform across the study 
area, except for particularly large changes in the northwest and east (Fig. 10). In contrast, 
changes in the western skink are predicted to be high in the Oxnard area and into the 
Angeles National Forest (Fig. 11). Genetic changes in the wrentit are generally predicted 
to be higher than in the two other species, and are highly spatially heterogeneous (Fig. 
12). 

Western fence lizard (Sceloporus occidentalis) 

 
Fig. 10. Identified areas of change in genetic variation in the western fence lizard in Southern 
California by the year 2080, under an A1 climate scenario. 
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Western skink (Plestiodon skiltonianus) 

 
Fig. 11. Identified areas of change in genetic variation in the western skink in Southern California by 
the year 2080, under an A1 climate scenario. 

Wrentit (Chamaea fasciata) 

 
Fig. 12. Identified areas of change in genetic variation in the wrentit in Southern California by the 
year 2080, under an A1 climate scenario.  
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Discussion and Management Considerations 

Climate change poses an urgent and significant threat to biodiversity23,24. Species may be 
unable to respond to climate change unless they have the capacity to shift their ranges. 
However, range shifts may not be possible for multiple reasons, including relatively low 
vagilities (or disparities in vagility within mutualistic species), isolation of populations 
due to habitat fragmentation, new biotic interactions resulting from a different species 
composition, or elevational constraints. Hence, many populations will have no choice but 
to adapt to changing climate conditions in situ. A prudent conservation strategy therefore 
is to design reserves that maximize intraspecific variation. Our results provide the first 
assessments of the utility of intraspecific genetic and morphological variation for 
conservation prioritization in the SMMNRA. 
 
It has previously been suggested that the CA-101 highway is a considerable barrier to 
dispersal, and hence gene flow22. Analyses of population structure not taking into account 
local environmental conditions support this hypothesis. A clear north-south gradient 
exists in three of the four study species, with a sharp transition concurrent with the 
location of the highway. Yet, taking into account the potential effect of selection due to 
local environmental conditions revealed that habitat may be the most important driver of 
population divergence. Nevertheless, in two species, the CA-101 was selected by the 
model as a significant contributor to explaining genetic variation. These results suggest 
that this highway may indeed be a barrier to gene flow for small reptiles and birds, and 
warrant further research with respect to the strength of the barrier and potential ways to 
mitigate its impact. At least one of our target taxa, the western skink, demonstrated 
significant dispersal and connected populations across this barrier, suggesting either 
natural or anthropogenically-created (sewers, drainpipes) corridors may in fact serve as 
useful aids to gene flow and dispersal. An understanding of these major barriers and their 
varying impacts on genetic diversity in an urban environment is of paramount importance 
under a changing environment. 
 
In the face of climate change, habitat fragmentation is a major concern, potentially 
worsening the direct impacts of changing climate conditions in at least two ways. First, 
barriers will prevent populations from tracking their optimal habitat conditions, leaving 
adaptation to new conditions as the only means to ensure long-term survival. Second, 
effective population sizes can be reduced to the extent that they suffer from inbreeding, 
resulting in the loss of the genetic diversity that is key to the ability to adapt to new 
conditions. Therefore, it is imperative that efforts be undertaken to maintain dispersal and 
gene flow between subpopulations. 
 
Despite differences in vagilities and ecological requirements, spatial patterns of genetic 
variation are largely concordant between the four studied species. These results suggest 
that a limited number of species could serve as a surrogate for much of the ecological 
community. In our work in Ecuador, where we modeled genetic variation in seven 
different species, we found a similar concordance between important areas for 
conservation among our study species. Thus, conservation efforts that aim at 
incorporating intraspecific variation into the design of reserves may measure and model 
genetic diversity in a set of common species that are easy to sample. In addition, we have 
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now applied our conservation prioritization framework to areas at medium (Ecuador) and 
small (SMMNRA) scales, with similar results with respect to the use of surrogates, 
suggesting that the framework is useful at multiple spatial scales and in different regions 
of the world. 

The importance of maximizing a species’ adaptive potential is emphasized by our 
predictions of future genetic variation. Even though the exact nature of the future 
response to changing climate conditions remains unclear, our modeling efforts suggest 
that the spatial patterns of necessary changes are highly diverse among different species. 
Indeed, long-term studies of different great tit (Parus major) populations in Europe 
suggest that responses may even vary within species25. Because of this uncertainty in 
potential responses, it will be risky to identify areas that will be climatically stable over 
time. However, protecting all possible environmentally-associated standing genetic 
variation will maximize a species’ chances to adapt to new conditions. For our study 
species in the SMMNRA - and likely for a larger set of species for which these four can 
act as surrogates - this can be done, for example, by identifying areas covering the widest 
range of genetic variation (or colors in the maps presented in Fig. 9). An efficient strategy 
is to protect those areas with high levels of genetic variation, i.e. those where many colors 
are covered in a small area. As such, the four areas highlighted in Fig. 9 can efficiently 
protect most of the genetic variation in these species. With relatively few species, 
potentially important areas for protection can be identified visually. However, with more 
species, the design of areas to protect features of biodiversity is typically formulated as a 
constrained optimization problem in which the objective is to establish protected areas 
that meet the representation targets for the features while taking up as little land area as 
possible26. Socio-economic data can be included as part of the constraint on land use. 
Reserve selection software often used include Marxan27, Zonation28, and ResNet26, which 
was used for the work in Ecuador3. The output of the models of intraspecific variation 
will be partitioned into classes that represent populations similar for that trait. Classes 
will be treated in the reserve selection software similarly to species occurrences. That is, 
a set of reserves is selected based on the requirement that at least a target percentage of 
the occurrences of each surrogate (i.e., genetic/morphological class or species) should be 
represented in those reserves. Thus, areas harboring high variation will be preferentially 
selected, but unique variation will also be protected. 
 
Specific Management Recommendations 
 

• Identify and research corridors allowing for increased connectivity across 
anthropogenic barriers (CA-101, CA-23, CA-5) 

• Investigate additional species (particularly threatened and endangered) within the 
SMMNRA to determine if identified regions of high genetic variation in common 
species also contain high genetic diversity in rare species 

• Explore land acquisition opportunities in the regions identified harboring high 
genetic variation in the four target taxa, particularly in those areas falling outside 
the SMMNRA 

• Continue close monitoring of population structure in these and other taxa to best 
understand temporal change in populations under future climate change 
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Conclusions and Future Research 
 
Despite the fact that much of the Santa Monica Mountains National Recreation Area 
(SMMNRA) is comprised of either federally- or privately-owned land that does not face 
the same increase in urbanization as developing countries do, identifying regions that 
harbor the highest genetic diversity provides managers and stakeholders the ability to 
target these areas for further study and research efforts. Endangered or less common 
species in these areas may be particularly vulnerable to small disturbances in habitat 
availability or large-scale climate changes that occur in existing habitats. Providing 
habitat to more 50 threatened or endangered species, the SMMNRA is considered a 
Mediterranean ecosystem conservation hotspot, and how these less common species will 
cope with current and future climate change is largely unknown. In addition, our analyses 
have identified currently unprotected regions north of the CA-101 that contain high 
amounts of genetic variation in the taxa studied. These locations (west of Simi Valley and 
west of the Angeles National Forest) could prove to be ideal targets for focused 
conservation and land acquisition efforts. 
 
Despite identifying regions containing high genetic variation and their changes under 
climate change revealed in these analyses, additional research would greatly aid in 
confirming that these regions also harbor high genetic variation in other species. Of 
particular interest would be those species that are likely to be most impacted by changing 
climate, such as endangered native plant and insect species that are unable to rapidly 
move to new habitats. In addition, applying these models to other regions, specifically 
those that are not afforded the same level of current protection as the SMMNRA, could 
support the generalizability of our results. We have demonstrated our measures of genetic 
variation and their link to environmental variability can be a useful tool to capture 
adaptive potential here in a California LCC, and in tropical regions3, but their application 
to other LCC regions in the United States remains unexplored. We are hopeful that the 
current study acts as impetus for applying the developed methods to additional species 
and regions in efforts to best inform future management and conservation decisions. 
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Project Outcomes 

1) Two postdoctoral researchers were trained under this project, each under part-
time contribution 

2) One graduate student from the Department of Ecology and Evolutionary Biology 
gained experience in genetic analyses and geographic information systems  

3) Two undergraduates (one ULCA, one University of Tubingen) assisted and 
gained knowledge about local biodiversity, use of the R statistical package, and 
genetic analyses in the R framework 

4) Collaborations between UCLA and the Santa Monica Mountains National 
Recreation Area established; these include the addition of three additional datasets 
from 3 new target taxa (bobcats, gray foxes, and tree frogs) to be included in 
further analyses 

5) Presentations, in-person scientific meetings, and collaborations were produced to 
disseminate results of this work 

Products/Data Sharing 

1) Genetic distances across the SMMNRA established and to be made publically 
available 

2) Spatially interpolated maps of population structure and assignment publically 
available for each of the four target taxa 

3) Current Maps of Generalized Dissimilarity Models for each of the four target taxa 
4) Future Projected Maps of Genetic Variation Change publically available for two 

decades (2050, 2080) under the A1 Climate Scenario. Additional decades and 
scenarios made available upon request. 

5)  Data and results to be uploaded to the Climate Commons 
6) Manuscript to be submitted to Evolutionary Applications in preparation 

(submission date - January 2014), focused on four target taxa 
7) Additional manuscript examining morphological data in four target taxa as well as 

the inclusion of 3 additional taxa (2 mammals, 1 amphibian) to be completed in 
Spring 2014 

8) Results to date presented to CA-LCC webinar (February 2013) and at various 
scientific meetings (IALE, Rhode Island, 2012, presented by R. Harrigan, and 
ESEB, Lisbon, Portugal, 2013, presented by Henri Thomassen) 

9) Continued collaboration with SMMNRA researchers (Seth Riley, Katy Semple 
Delaney) on future publications and conservation and management of rare or 
endangered species within the SMMNRA  
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