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Abstract

The flora of California, a global biodiversity hotspot, includes 2387 endemic plant taxa. With anticipated climate change, we
project that up to 66% will experience .80% reductions in range size within a century. These results are comparable with
other studies of fewer species or just samples of a region’s endemics. Projected reductions depend on the magnitude of
future emissions and on the ability of species to disperse from their current locations. California’s varied terrain could cause
species to move in very different directions, breaking up present-day floras. However, our projections also identify regions
where species undergoing severe range reductions may persist. Protecting these potential future refugia and facilitating
species dispersal will be essential to maintain biodiversity in the face of climate change.
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Introduction

The California Floristic Province has over 5500 native plant

taxa; 40% of them are endemic, that is, their entire native

distributions are within the Province [1]. (By taxa, we mean

distinct species, subspecies, or varieties, and we use ‘‘species’’

hereafter for simplicity [2].) Models project that California’s

temperature and rainfall will change considerably in this century

[3]. Here, we use observed data on species’ distributions and

present-day climate to build multiple bioclimatic models. We then

apply these models to project changes in endemic species’ range

sizes, distribution and diversity under future climate scenarios.

Empirical examples of species’ range shifts resulting from

climate change have been recorded for numerous taxa [4–5].

Projecting future changes is a crucial step towards planning for

and mitigating the impacts of climate change on biodiversity [6].

Most previous attempts have focused on small subsets of species

[7–9] or vegetation types [10–11]. They incorporated varying

degrees of data on physiology and dispersal. A small number of

related studies have focused on estimating changes in biodiversity

[12–13]. As we describe in the methods, biodiversity studies must

limit themselves to species subsets restricted to the region – such as

endemics [14]. Sparse flora-wide data on physiology and dispersal

has meant that studies across floras have included simplified

treatments of individual species’ biology.

A recent study of two California oak species projected significant

range reductions for both species [7]. In southeastern California, a

study of Yucca brevifolia that included physiological responses to

increased CO2 levels projected a slight decrease in range size [15].

Analysis of the responses of vegetation types in California to climate

change projected decreased coniferous forests in the northwestern

part of the state and increases in broadleaf vegetation [16]. In

Eastern North America, models for 80 tree species project range

expansions for approximately 30 species and an equal number of

range contractions. In that study, the centroids of nearly half of the

species were projected to move at least 100 km to the north [17].

Outside of North America, regional studies have addressed both

range shifts and potential levels of extinction in the face of climate

change. Studies of the Proteaceae in the Cape Floristic Province –

another Mediterranean hotspot — estimate that this group may

lose up to 20% of the species considered [8,18–19]. A study of 975

endemic plant species in southern Africa projected that the

Mediterranean climate portion of the study area will lose the

highest proportion of species [20], while flora-level studies from

Europe have projected that as many as half of the species studied

will be threatened [12–13,21].

Currently, there are no published assessments of potential

impacts of climate change on regional endemic floras for any part

of North America. California is particularly well suited to such a

study, as it has high endemic plant diversity and the quality of

plant distribution and climate data across the region are excellent.

California also provides an interesting case study because of its

topographic complexity, extensive urban and agricultural land use,

and Mediterranean climate characterized by distinctive rainfall

and temperature patterns.

We assess 8 different potential scenarios for the future of the

California flora in the face of climate change. These are the

combinations of three pairs of possibilities. First, we compared two

projections of future emission levels from human activities. One is

higher, with global CO2 emissions reaching almost 30 GtC per
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year, or 4 times present-day levels, by 2100 (SRES A1FI) while the

other emission scenario is lower, with CO2 emissions rising slightly

by mid-century before dropping to below present-day levels by the

end of century (SRES B1) [22]. By 2100, global atmospheric CO2

levels reach 550 and 970 ppm under the lower and higher

emissions scenarios, respectively. Second, we compared projec-

tions centered 80 years from now (2070–2099) from two global

climate models with higher and lower sensitivities to atmospheric

greenhouse gas levels. The U.K. Meteorological Centre’s Hadley

Centre Coupled Model version 3 (HadCM3) model [23–24] is

moderately sensitive to increases in emissions, while the DOE/

NCAR Parallel Climate Model (PCM) is less sensitive [25]. Third,

we explored two distinct and widely used dispersal scenarios: one

where plants exhibit unrestricted movement to new locations, and

one with no movement [26,13,18].

Projecting the impacts of climate change to an entire endemic

flora is complicated by scarce and variable distribution data.

Studies conflict on how many geo-referenced specimens are

necessary to obtain robust species projections [27,28]. Including

poorly known species risks biasing projections of biodiversity

patterns if the error is directional. In contrast, poorly known

species may have smaller ranges, and small ranged species are

known to be more vulnerable to extinction [29]. Excluding such

species may be equally inappropriate.

A recent study recommends using Maxent and at least 30 non-

validation specimens for robust species projections [28]. Following

these recommendations, we model and evaluate the 591 out of 2387

California Floristic Province endemic species that have at least 42

specimens using Maxent [30]. Specimen records were obtained from

the Consortium of California Herbaria, a centralized portal

accessing over 959,000 specimens from 16 herbaria [31]. To address

whether poorly known species tend to have small ranges, we compile

an independent dataset of range maps for each species to compare

with the number of specimens. (We refer to these as TJM1 range

maps, see Materials and Methods.)

To assess whether excluding poorly known species biases

diversity patterns, we build a multilevel generalized linear model

(MLGLM) [32] incorporating all 2069 species with at least 2

specimens. This model simultaneously estimates relationships

between the probability of a plant being found in a location,

and climatic variables. It does so both at the level of each species as

well as the entire flora. The hierarchical structure of this model

gives an unbiased predictor of climate influences on presences, and

allows poorly known species to draw inferential strength from the

flora as a whole [33]. As a result, the model is informed by data

from all species, but the influence of poorly known species is

properly weighted against the flora. We then compare biodiversity

patterns from this hierarchical approach with Maxent projections

from the best known 591 species.

To summarize the impacts of climate change on the California

flora and to compare the projections with other studies, we ask

four questions. First, where will endemic species diversity be most

influenced by climate change? Second, if species are permitted to

move, where will they go? Third, how do we project range sizes to

change? Fourth, where do we expect future refugia — locations

where species at risk from climate change will persist under future

climates? To date no studies have mapped the locations of such

refugia.

Results

Study area
The California Floristic Province (Fig. 1A, solid line) occupies

approximately 310,000 km2. It is ecologically and climatically

delimited and its flora is both rich and well studied [34–36]. The

six constituent floristic regions — Northwestern California,

Central Western California, Southwestern California, the Great

Central Valley, the Cascade Ranges, and the Sierra Nevada —

encompass elevations from 200 m below sea level to about

4,000 m. The Province includes almost all of California (Fig. 1A,

dashed line), except its deserts and the northeastern Modoc

Plateau, as well as adjacent parts of Mexico and Oregon. The

study area for this paper includes the entire California Floristic

Province and a surrounding area of equal size in the form of an

approximately 200 km wide buffer (Fig. 1A, all colored areas).

Diversity change
We created diversity maps by summing modeled species

distributions as is commonly done in Gap analysis [37] and

biodiversity studies [38]. First, we present Maxent projections

from the 591 species with the most distribution data. We then

compare these projections with approaches that include poorly

known species.

Based on these 591 species, we project present-day endemic

diversity to peak at 340 species per km2, with the highest

concentrations from southern Northwest California through most

of Central Western California and in the foothills of the Sierra

Nevada (Fig. 1B). These results correspond to previous descrip-

tions of patterns endemic diversity in the California Floristic

Province [39].

Our models yield projections of future diversity under a range of

climate change scenarios (Fig. 1, C through J). We contrast

scenarios where species cannot move — and so their ranges can

only shrink (Fig. 1, C through F) — with those where species are

allowed unrestricted movement to new areas that satisfy their

climatic constraints (Fig. 1, G through J).

Under the highest level of climate change examined here (mid-

high climate sensitivity and higher emissions, as represented by

HadCM3 A1FI projections), with the assumption of no dispersal,

we project peak diversity to drop as low as 247 species per km2

(Fig. 1, F). In contrast, under relatively low amounts of climate

change (low climate sensitivity and lower emissions, as represented

by PCM B1 projections), and allowing for dispersal (Fig. 1, G and

H), diversity increases across extensive areas, particularly the

northern coasts. As expected, the worst-case scenarios come from

the higher sensitivity simulations (HadCM3: Fig. 1, E, F, I, J)

compared to the lower sensitivity simulations (PCM: Fig. 1, C, D,

G, H). Similarly, projections based on the higher emissions

scenario (A1FI: Fig. 1, D, F, H, J) alter diversity more than those

based on lower emissions (B1: Fig. 1, C, E, G, I). Dispersal greatly

buffers climate impacts on total diversity, as species gains may

partially or wholly offset losses at a local level (Fig. 1, C–F vs. G–J).

Across all scenarios, the general trend is that diversity shifts

towards the coast and northwards. Coastal areas, especially

Northwestern California and Central Western California, are

presently rich in species. Even under significant climate change,

they will continue to be so. In contrast, the foothills of the northern

Sierra Nevada are extremely vulnerable to species loss. Under

scenarios that allow dispersal, the areas that straddle the

California-Oregon border also become rich in species — as

expected from northward dispersal.

Diversity change and poorly known species
The number specimens and range size derived from the TJM1

range maps were positively correlated (r= 0.49). Summed range

maps for all 2387 endemic species indicate that species richness

peaks at 621 species (Fig. 2A).

Climate Change & the CA Flora
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Figure 2B shows present diversity projections of 2068 species

from the MLGLM generalized linear model. Diversity patterns in

figure 2B are similar to those in figure 2A except that the range

map derived diversity is lower in Northwestern California and

Southwestern California. The patterns in figure 2B differ from the

Maxent projections in that diversity is lower in the Sierra Nevada

and Southwestern California and higher in coastal Northwestern

California.

Changing patterns of diversity projected from the multilevel

model are very similar to the patterns of diversity projected from

Maxent. In general, diversity shifts towards the coast and

northwards, and the degree depends on the dispersal assumptions,

emission scenarios, and the sensitivity of climate simulations. The

following results on species movement and range size change are

from Maxent projections of the 591 best known species.

Species movement
Changes in diversity reflect the overall consequences of local

extirpation and species dispersal. These patterns do not address

the potential fate of individual species. For that reason, we also

examined individual species fate in terms of projected geographic

shifts in species’ mean elevation, range centroid, and percent

change in range size. In high emission scenarios (A1FI) with

dispersal, we project species range centroids to shift by an average

of up to 151 kilometers (see Fig. S1).

As one might expect, species tend to move to higher elevations

and often northward (see Fig. S2). Interestingly, these trends result

in divergent projections for elements of the flora. Given

California’s geography, movement to higher elevations often

means taking a southward path. Figure 3A illustrates two

representative species that presently have essentially adjacent

ranges. In the future, we project their ranges to be widely separate,

with one moving south to higher elevation regions of the Sierra

Nevada, and the other moving north and towards the coast.

Figure 3B illustrates the broader consequences, based on analysis

of the centroids of the species’ ranges. They are ecologically

dramatic. Within the six major regions, substantial numbers of

species move in diametrically opposite directions — typically north

of northwest, and south of southeast. In the Cascade Ranges and

the Sierra Nevada, species at high elevations tend to move south to

higher elevations. Those at lower elevations, like those in other

regions, are a mix of species, some of which move south and others

that move north. (See Fig. S3 for scenarios not shown here).

The results shown here are for the largest projected changes in

temperature (HadCM3, A1FI), allowing dispersal. We obtain

Figure 1. Study area and Maxent diversity projections of the best known 591 species. (A) The province divided into six floristic regions
(solid lines): Northwestern California (NW), Central Western California (CW), Southwestern California (SW), the Cascade Ranges (CaR), the Great Central
Valley (GV), and the Sierra Nevada (SN). The province includes most of California (dashed line) and portions of Oregon and Mexico. We include a
surrounding buffer of equal area (colored areas outside solid line). Colors represent elevation in meters. (B) Projected present diversity. (C–J)
Projected diversity 80 years from now modeled with increasing amounts of future climate change: (C–F) Plants cannot disperse. (G–J) Plants can
disperse to all suitable areas. (C, F, G, H) Simulations based on the lower sensitivity PCM model. (E, F, I, J) Simulations based on the higher-
sensitivity HadCM3 model. (C, E, G, I) Lower emissions scenario (B1). (D, F, H, J) Higher emissions scenario (A1FI).
doi:10.1371/journal.pone.0002502.g001

Climate Change & the CA Flora

PLoS ONE | www.plosone.org 3 June 2008 | Volume 3 | Issue 6 | e2502



similar patterns under lower projections of climate change and

without dispersal (when species ranges can only shrink). In short,

even relatively moderate projections suggest that climate change

has the potential to break up local floras, resulting in new species

mixes, with consequent novel patterns of competition and other

biotic interactions.

Range size change
As in previous studies in Europe and southern Africa, we project

both reductions and increases in range sizes, depending on the

degree of climate change and the abilities of the species to disperse

[12–13,20–21]. Under scenarios without dispersal, we project that

up to 66% will experience .80% reductions in range size. The

magnitude of variability in range size change forecasts is

comparable with a recent study based on global vegetation

modeling, rather than species-based models [40]. (See Fig. S4 for

summaries of range size change).

Figure 4 shows the geographic patterns of change in range size.

Figure 4, A through D, maps the geometric mean of the changes in

range size for species projected to occupy each pixel on the map, for

scenarios with dispersal. The minimum mean decrease in range size

is 258% in Central Western California in the HadCM3, A1FI

scenario. The maximum mean increase in range size was +35% in

the foothills of the Great Central Valley in the PCM, A1 scenario.

We stretched the colors from 210% to +10% in order to show the

majority of more moderate range size changes.

Green areas are dominated by species with expanding ranges.

Red areas harbor shrinking species; they are climate change

refugia for the species that a future generation of biodiversity

managers may classify as ‘‘threatened’’. In the future, the lower

sensitivity simulations (PCM: Fig. 4, A–B) project extensive areas

dominated by species with expanding ranges, particularly the

more Mediterranean PCM, A1FI scenario (Fig. 4B). In these

scenarios the southern Sierra Nevada and the mountains of

Northwestern California harbor shrinking species. In the higher

sensitivity simulations (HadCM3: Fig. 4, C–D) these areas are

joined by the coastal mountains of Northwestern California and

Central Western California which are dominated by species

projected to suffer range reductions.

The red refugia in Figure 4 A–D combine species contracting

into their current ranges and shrinking species dispersing into new

areas. Figure 4 E through H maps out the gains (future diversity

with dispersal minus future diversity without dispersal) of the

quarter of the species undergoing the greatest range reductions.

The potential for these areas to act as refugia depends greatly on

whether species are able to disperse into them.

Figure 2. (A) Present diversity from range maps for all California Floristic Province endemic species (2387). (B) Projected present
diversity from the Multi-level Generalized Linear Model for all species with .2 specimens (2068). (C–J) Projected diversity 80 years from now
modeled with increasingly increasing amounts of future climate change: (C–F) Plants cannot disperse. (G–J) Plants can disperse to all suitable areas.
(C, F, G, H) Simulations based on the lower sensitivity PCM model. (E, F, I, J) Simulations based on the higher-sensitivity HadCM3 model. (C, E, G, I)
Lower emissions scenario (B1). (D, F, H, J) Higher emissions scenario (A1FI).
doi:10.1371/journal.pone.0002502.g002
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Discussion

Model projections of diversity, range size, and species
movement

The projections of diversity change are comparable with other

studies from Africa and Europe [12–13,20–21]. As in these studies,

model projections depend greatly on future climate simulations,

emission levels, and dispersal scenarios. As in studies in the South

African Cape, we found that species losses were disproportionately

clustered in montane areas as opposed to lowlands [19]. We also

project that these montane areas, particularly the coastal

mountains, are where large number of species will persist.

The magnitude of our range centroid shifts is similar to those

reported for Eastern North American trees [17]. Kueppers et al.

projected that the range centroids of the two California oak species

they considered would shift northwards [7]. Likewise, Lenihan et

al. projected broadleaf forests – which include oak woodlands – to

move north into what are now chiefly coniferous forests [16]. We

projected large numbers of species – including these oaks – to

behave similarly to these prior projections as they expand into

Klamath Mountains on the California-Oregon border and recede

from the center of the state. This similarity is despite our use of

climate simulations that project greater increases in temperature

and decreases in precipitation than those used by Kueppers et al.

Across the entire flora, however, we project that large numbers of

species will shift south as they cluster around the coastal mountains

of southern California. Kueppers et al. projected the two oak

species ranges to contract. As reported by other flora wide studies

[20–21], our projections of range size change vary greatly based

on future climate simulations, emission levels, and dispersal

scenarios. Under all scenarios explored here except the PCM

simulation with A1FI emission levels, we also project the ranges of

these two species of oak will contract.

The influence of poorly known species
The positive correlation between range map derived range size

and number of museum specimens raises legitimate concern that

excluding poorly known species may bias the results. From the

comparison of the Maxent results from 591 species and the

MLGLM results from 2068 species, we did not find the exclusion

of these poorly known species to influence the general patterns of

projected present and future biodiversity. These results suggest

that the patterns of projected biodiversity presented here are

robust despite the exclusion of poorly known species.

Figure 3. Movement of species geographic centroids based on HadCM3 simulations using the A1FI emission scenario 80 years in
the future and assuming species can move. (A) Two representative species that have adjacent present ranges (lighter colors) and are projected
to move in opposing directions (arrows and darker colors). (B) Projected centroid movements for all species. Individual polar plots group species by
the floristic region in which their centroid originates. Within each plot, species are grouped by the elevation in which their centroids originate. The
magnitude of the directions represents the percentage of the regional flora moving in each direction.
doi:10.1371/journal.pone.0002502.g003
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Model uncertainty and performance
The bioclimatic models implemented in this study make a

number of simplifying assumptions that may bias the projections

[41–42]. The models ignore several factors that would exacerbate

the projected impacts of climate change. These include special-

ization to restricted soil types [43], the spread of invasive species

[44], local adaptation of populations within species, and genetic

constraints on evolutionary response to climate change [45]. On

the other hand, resilience of established plants and seed banks

[46], differing population responses at range margins [47], and

adaptive evolutionary responses might mitigate the influence of

climate change. Effects of wildfires, projected to increase in the

future [48], are uncertain. Both climate change and uncertain

changing land-use patterns will impact species distributions [49]. It

is uncertain what the cumulative effect of these dual threats on

species will be [50]. Preliminary modeling efforts to incorporate

current and future land-use estimates showed that reduced habitat

from increased urban and agricultural development led to further

declines in projected diversity, but did not qualitative alter the

outcomes presented here.

A key simplifying assumption is the ‘‘equilibrium postulate’’

[51–52] that species’ current ranges are in equilibrium with their

environment and there are no time lags on the influence of past

climate on current species distributions [53]. While this may not

be the case in parts of California where plant ranges are still

responding to the post-glacial conditions, human induced climate

change is projected to be far greater than post-glacial change.

Thus, it is likely that species responses to human induced climate

change will far outweigh any post-glacial response. Another

concern is that if drivers not considered in these models are

correlated with the climate data, we may wrongly attribute species

distributions to climate tolerances. Furthermore, our models

ignore the influence of species interactions on plant ranges [54].

Exploring these simplifying assumptions represent important

avenues for future research.

As described in the materials and methods, we evaluate Maxent

projections for the current time period using two widely-used

statistics calculated from a set of evaluation specimens independent

from the specimens used to train the models [28,55,56]. While

these evaluation methods indicate that the models performed very

Figure 4. Future patterns of range size changes across increasing levels of climate change in which species can move. (A - D) Percent
geometric mean change in range size (Future/Present with colors stretched from a ,-10% decrease to a .10% increase). (E - H) Diversity of species
gains (future diversity with migration minus future diversity without migration) for the quarter species suffering the largest range contractions.
(A, B, E, F) Simulations based on the lower-sensitivity PCM model. (C, D, G, H) Simulations based on the higher-sensitivity HadCM3 model.
(A, C, E, G) Lower emissions (B1). (B, D, F, H) Higher emissions (A1FI).
doi:10.1371/journal.pone.0002502.g004
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well, they do assume that models that predict current ranges well

will also predict future ranges well. Recent studies have questioned

this assumption [57]. Different models with equivalent current

projections may project very different future ranges based on how

those models interpolate new climate combinations not represent-

ed in the current climate data [58]. Likewise the evaluation

procedure does not incorporate uncertainty in future climate

projections or species dispersal. These sources of uncertainty may

be significant when, as in the case of rainfall, the climate variables

are particularly important determinants of plant distributions [59].

Management considerations
These results present a sobering picture of the potential impacts

of climate change on California’s diverse and distinctive flora. The

severity of projected impacts is closely linked to the magnitude of

climate change. That, in turn, depends crucially on human

emissions of greenhouse gases over the next few decades. The

projected impacts are also very sensitive to the potential rate of

plant movement, and rapid dispersal could mitigate much of the

impact on individual species and overall diversity. However, rapid

movement by natural dispersal is unlikely on a century time-scale,

except for weedy species with short generation time and highly

dispersable propagules. Human assisted dispersal must be

considered as a critical component of conservation and biodiver-

sity management in the next century.

The results of this study present a dilemma for conservation

planning in the face of climate change. Future diversity will likely

peak along the coast and to the north of its present concentrations

(Fig. 1). These areas are sensible priorities for conservation. Some

areas of high diversity, however, will be comprised of species

expanding their ranges, and these species may not represent

important targets for conservation efforts. Areas that are projected

to harbor species with shrinking ranges, on average (Fig. 4, A–D),

include many mountainous areas scattered across the study area.

We identify these areas as refugia that may disproportionately

contain the most ‘‘threatened’’ species. These ‘‘future refugia’’

present valuable opportunities as conservation targets. They may

protect significant components of biodiversity into the next

century. The number of species projected to survive in these

refugia (Fig. 4, E through H) depends critically on the ability to

disperse, highlighting the importance of landscape connectivity

and potential restoration in the face of increasing urbanization,

land use change, and disturbance.

Materials and Methods

Distribution data
We compiled geo-referenced specimens from the Consortium of

California Herbaria [31] (accessed April 27, 2008) for the 2068

endemic species with at least two specimens. The average number

of specimens per species was 37 with a maximum of 495. Of these

2068 species, 591 had at least 42 specimens (a minimum of 31 for

model training and 11 for model evaluation).

Additionally, we built range maps for each species from The

Jepson Manual, 1st edition (TJM1) [2], a flora that provides

distribution information for every vascular plant species found

within the state of California. The Jepson Manual divides the

California Floristic Province portion of the state into 28 polygons

called subregions. Experts recorded each species as present or

absent in each subregion. In addition, experts assigned lower and

upper elevation limits to each species. We hand drew the Oregon

and Baja California portions of range maps for 508 species that

range outside state of California with data from the Oregon State

University Herbarium [60] and the Flora of Baja California [61].

The range maps, which we refer to as TJM1 range maps, are the

intersection of the elevation limits and the subregion polygon using

a widely used digital elevation model [62]. See Table S1 for a list

of number of specimens for each species and the TJM1 range map

derived range size.

Current climate data
We created four largely independent climate variables to

represent present climate, derived from average monthly mean

temperature and monthly total precipitation from the 1 km

resolution DAYMET 1980–1998 mean climate database (www.

daymet.org) [63]. As DAYMET does not cover Mexico, baseline

climate data for Baja California portions of the study area were

derived from an1/8th degree climate baseline database. DAY-

MET and the 1/8th degree climate baseline database are both

geographic interpolations of climate station data with two

principle differences. They are interpolated at different spatial

resolutions and the network of stations in Mexico is generally

sparser than in the US. For each dataset, we averaged the same

variables – monthly mean temperature and monthly total

precipitation – across the same time period, 1980–1998 [64].

The four climate variables were the first two axes of two

principal components analyses (PCA), one based on the 12

monthly mean temperatures and one on the 12 monthly

precipitations, respectively (Fig. S5, A–D). We used the prcomp

function in R to perform the PCA. The first two axes comprised

69% and 20% of the variation in monthly temperatures and 48%

and 21% of the variation in monthly precipitations. In each case,

the first PCA axis approximated the magnitude (mean tempera-

ture and total precipitation) and the second axis the seasonality in

temperature and precipitation (Fig. S5, E–H). For each PCA, the

two axes are orthogonal by definition. Correlations among axes

between the two PCAs ranged from 20.53 to 0.40. Orthogonal

PCA axes have two principle advantages. They optimally

summarize month-to-month variation in climate, and they

eliminate interactions among correlated variables. The disadvan-

tage of PCA axes is that they can be difficult to interpret. We

selected the two independent PCAs, rather than a single PCA

across all climate variables, to balance ease of interpretation of

temperature and precipitation with the statistical advantages of

working with largely orthogonal variables.

Maxent Models
For each of the 591 best known species, we used Maxent

(version 2.3) [30] to model habitat suitability from the four climate

variables. We used the default convergence threshold (1025) and

maximum number of iterations (500) values. We withheld 25% of

the specimens for model evaluation. We let Maxent select both

suitable regularization values and functions of climate variables

automatically, which it achieves based on considerations of sample

size. Maxent outputs a continuous index, ranging from 0 to 100,

an indicator of relative suitability for the species, based on the

principle of maximum entropy, as constrained by the input

occurrence data. Choosing an appropriate threshold must balance

errors of commission and errors of omission. We used the widely

adopted method of thresholding the point on the reciever

operating characteristic curve where the sum of the sensitivity

and specificity is maximized (see below).

Maxent model evaluation
We used the test specimens to evaluate the performance of the

Maxent projections using two widely used statistics that are

recommended when evaluation absences are unavailable. The first

was the area under the receiver operating characteristic curve [65]
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modified for use with a presence only test data [30]. This statistic

measures model performance by plotting the sensitivity values –

the true positive fraction of test points – against 1-specificity – the

false-positive fraction for all available probability thresholds [53].

The average value of the statistic, which can range from 0.5

(random) to 1.0 (perfect discrimination) was 0.95.

The second statistic was prediction success, the percentage of

positive evaluation occurrences correctly classified as positive [28].

This statistic is threshold dependent and uses the binary

distributions. The average prediction success was 0.93. See Table

S2 for evaluation statistics for each of the 591 species.

Despite being statistically defensible, the chosen thresholds

produced diversity maps that exceeded the diversity calculated

from the TJM1 range maps. Since range maps are known to

overestimate range size by over interpolating patchy species

distributions [38], range map derived diversity should provide an

upper-bound on diversity estimates. This serves as a reminder that

distribution modeling with presence only data is inherently

qualitative [66–67]. We caution against over interpreting the

magnitude of the biodiversity projections. Comparisons with the

multilevel model, however, indicate that the spatial patterns are

robust.

Multi-level Generalized Linear Model
Unlike Maxent, generalized linear models require presence and

absence data. To generate absence data for each of the 2068

species with at least 2 specimens, we generated a random (from 1

to 54) number of informed pseudo-absence data by randomly

sampling points from outside the species’ range map. See Table S2

for a list of the number of pseudo-absences for each species. We

chose this configuration to maximize the variability among

presence/absence ratios for the species to aid model convergence.

We used the presence/absence data from these 2068 species to

build a hierarchical model of the probability of species occurrence

as a function of the climate data.

The multi-level model has two levels: a flora level and an

individual species level. At the flora level, the model estimates 9

parameter values for a data matrix consisting of an intercept,

linear versions of the four climate variables, and quadratic versions

of the four climate variables. Predicting P, the probability of

finding a specimen in a site, the model is:

Pij~ajzbjXijzeij , ð1Þ

where Pij is the probability of seeing plant i of species j at a site given

aj is the intercept for species j and bjXij is the design matrix of climate

variables and their coefficients. The error term, eij, is distributed as a

logistic random variable with set variance of 1.6 [33]. The intercept

and all first order regression coefficients then have their own

regression equations at the species-level of the model:

aj~c00zu0j , ð2aÞ

and

bj~c0qzuqj, ð2bÞ

where c00 and c0q are the intercepts for the species intercepts and the

q in 1, …, Q first order regression coefficients (the four climate

variables). In these species-level models, the residuals error terms u0j

and uqj are distributed normal with mean 0 and variance t0 and tq

respectively. Because these regression models are estimated

simultaneously and iteratively by weighting the information both

within and across species, the combined model is an unbiased

estimate of the regression coefficients of primary interest, a and b.

The estimation was done using penalized quasi-likelihood (PQL)

method in the lme4 package [68].

For each individual species, the model estimates random

parameters for linear versions of the intercept and the four climate

variables. The model estimates all parameters simultaneously, and

the structure of the model allows poorly known species to draw

strength from the rest of the flora. Effectively, this causes poorly

known species to behave more like the average of the flora. The

individual influence of error prone, poorly known species is thus

appropriately weighted in diversity maps for the entire flora.

Future climate data
The future climate simulations are from the U.K. Meteorolog-

ical Office Hadley Climate Centre Model version 3 (HadCM3)

[23–24] and the DOE/NCAR Parallel Climate Model (PCM) [25]

general circulation models (GCMs). We used these simulations to

generate projections of future changes in temperature and

precipitation over the region of interest. HadCM3 is a mid-high

sensitivity model that produces a greater temperature response to a

given amount of greenhouse gas emissions than does PCM, a low-

sensitivity model. To project future emissions from human

activities, we used the SRES higher (A1FI) and lower (B1)

emissions scenarios that capture to some extent the uncertainty in

future climate due to human decisions [22], with CO2 emissions

ranging from slightly less than present-day levels up to four times

present-day levels by 2100. Our climatological future time period

represents 80 years (average of 2070–2099) from now.

The HadCM3 and PCM simulations project increases in mean

annual temperatures averaged across the state of California of 2.3–

2.2uC under B1 and 3.8–5.8uC under A1FI by 2070–2099. The

models also project increases in the magnitude of seasonal

temperature differences in most areas. Rainfall predictions are

more variable among models. Changes range from decreases of

157 mm to increases of 38 mm of total annual precipitation.

Within the United States, the global climate outputs were

statistically downscaled to 1/8th-degree resolution [3]. Slight

discontinuities along the US-Mexico border result primarily from

downscaling discrepancies in precipitation estimates. From these

data, we obtained four near-term and four long-term future

climate scenarios by adding the differential between future time

periods and the baseline time period for each model and emission

scenario to each current monthly baseline climate map. Future

climates were then projected into the two PCA spaces as passive

variables to obtain future values for the four axes representing

temperature and precipitation (see Figs. S6 through S7).

Supporting Information

Figure S1 Histograms of the density of species centroid shifts in

kilometers for each climate change scenario. (A–D) Scenarios in

which species are permitted to move. (E–H) Scenarios in which

species are not permitted to move. (A, B, E, F) Climate simulated

by the PCM model. (C, D, G, H) Climate simulated by the

HadCM3 model. (A,C,E,G) Scenarios with B1 emission levels.

(B,D,F,H) Scenarios with A1FI emission levels.

Found at: doi:10.1371/journal.pone.0002502.s001 (7.17 MB TIF)

Figure S2 Density histograms of mean elevation of species

ranges in the present (blue) and future (red) for each climate

change scenario. (A–D) Scenarios in which species are permitted

to move. (E–H) Scenarios in which species are not permitted to

move. (A, B, E, F) Climate simulated by the PCM model. (C, D,

G, H) Climate simulated by the HadCM3 model. (A,C,E,G)

Climate Change & the CA Flora

PLoS ONE | www.plosone.org 8 June 2008 | Volume 3 | Issue 6 | e2502



Scenarios with B1 emission levels. (B,D,F,H) Scenarios with A1FI

emission levels.

Found at: doi:10.1371/journal.pone.0002502.s002 (3.89 MB TIF)

Figure S3 Directional histograms of species centroid movement

for selected scenarios. Histograms are overlaid for different

elevational zones, based on the species present elevation. The

length of the vector in each direction is the percent of the

corresponding flora that moves in that direction based on 591

species modeled with Maxent. (A) Climate simulated by the

HadCM3 model with A1FI emission levels (severe scenario) where

species are not permitted to move. (B) Climate simulated by the

PCM model with B1 emission levels (less severe scenario) where

species are not permitted to move. (C) Climate simulated by the

PCM model with B1 emission levels (less severe scenario) where

species are permitted to move.

Found at: doi:10.1371/journal.pone.0002502.s003 (13.49 MB

TIF)

Figure S4 Distributions of range size changes across all scenarios

grouped by 6 range size change categories. (A–D) Scenarios in

which species are permitted to move. (E–H) Scenarios in which

species are not permitted to move. (A, B, E, F) Climate simulated

by the PCM model. (C, D, G, H) Climate simulated by the

HadCM3 model. (A,C,E,G) Scenarios with B1 emission levels.

(B,D,F,H) Scenarios with A1FI emission levels.

Found at: doi:10.1371/journal.pone.0002502.s004 (10.89 MB

TIF)

Figure S5 (A–D) Current climate layers derived from PCA

analyses and (E–H) corresponding climate variables. (A) Temper-

ature magnitude (Axis 1 of a PCA of monthly mean temperature

representing 69% of variation). (B) Temperature seasonality (Axis

2 of a PCA of monthly mean temperature representing 20% of

variation). (C) Precipitation magnitude (Axis 1 of a PCA of

monthly total precipitation representing 48% of variation). (D)

Precipitation seasonality (Axis 2 of a PCA of monthly total

precipitation representing 21% of variation). (E) Mean annual

temperature ({degree sign}C). Correlation with Temperature Axis

1 is 1.000. (F) Standard Deviation of mean monthly temperatures

({degree sign}C). Correlation with Temperature Axis 2 is 0.998.

(G) Total Annual Precipitation (cm). Correlation with Precipita-

tion Axis 1 is 0.980. (H) Coefficient of variation of total monthly

precipitation (cm). Correlation with Precipitation Axis 2 is 0.673.

Found at: doi:10.1371/journal.pone.0002502.s005 (13.28 MB

TIF)

Figure S6 Projected change in temperature magnitude (Axis 1,

arbitrary units) (A–D) and temperature seasonality (Axis 2,

arbitrary units) (E–H) under future climate change scenarios. (A,

E) PCM B1. (B, F) PCM A1FI. (C, G) HadCM3 B1. (D, H)

HadCM3 A1FI.

Found at: doi:10.1371/journal.pone.0002502.s006 (19.98 MB

DOC)

Figure S7 Projected change in precipitation magnitude (Axis 1,

arbitrary units) (A–D) and precipitation seasonality (Axis 2,

arbitrary units) (E–H) under future climate change scenarios. (A,

E) PCM B1. (B, F) PCM A1FI. (C, G) HadCM3 B1. (D, H)

HadCM3 A1FI.

Found at: doi:10.1371/journal.pone.0002502.s007 (19.89 MB

TIF)

Table S1 Distribution data for each endemic species. The first

two columns list the TJM1 range sizes in sq. kilometers and the

number of specimens. The next two columns indicate whether the

species was modeled with Maxent (.41 specimens) and included

in the MLGLM (.1 specimens). The last column indicates the

number of randomly selected informed pseudo-absences for use in

the MLGLM.

Found at: doi:10.1371/journal.pone.0002502.s008 (0.27 MB

XLS)

Table S2 Maxent model performance for the 591 best known

species. The first two columns list the number of specimens used to

test and train the models. The next column lists the area under the

receiver operating characteristic curve (AUC) evaluation statistic

which ranges from 0.5 to 1. The next column lists the threshold

used to create binary ranges from the cumulative index ranging

from 0 to 100. The last column lists the prediction success

evaluation statistic which is the percent of test specimens correctly

predicted by the binary ranges.

Found at: doi:10.1371/journal.pone.0002502.s009 (0.10 MB

XLS)
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22. Nakićenović N, Swart R (2000) Special Report on Emissions Scenarios.
Cambridge: Cambridge Univ. Press.

23. Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, et al. (2000) The
simulation of SST, sea ice extents and ocean heat transports in a version of the

Hadley Centre coupled model without flux adjustments. Clim Dyn 16: 147–168.
24. Pope VD, Gallani ML, Rowntree PR, Stratton RA (2000) The impact of new

physical parametrizations in the Hadley Centre climate model: HadAM3. Clim

Dyn 16: 123–146.
25. Washington WM, Weatherly JW, Meehl GA, Semtner Jr AJ, Bettge TW, et al.

(2000) Parallel climate model (PCM) control and transient simulations. Clim
Dyn 16: 755–774.

26. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, et al. (2004)

Extinction risk from climate change. Nature 427: 145–147.
27. Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample

size and species characteristics on performance of different species distribution
modeling methods. Ecography 29: 773–785.

28. Wisz MS, Hijmans JL, Peterson, Graham CH, Guisan A (2008) Effects of sample
size on the performance of species distribution models. Diversity and

Distributions, doi: 10.1111/j.1472-4642.2008.00482.x.

29. Pimm SL, Raven P (2000) Extinction by numbers. Nature 403: 843–845.
30. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of

species geographic distributions. Ecol. Modell. 190: 231–259.
31. Consortium of California Herbaria (http://ucjeps.berkeley.edu/consortium).

32. McMahon S M, Diez JM (2007) Scales of association: hierarchical linear models

and the measurement of ecological systems. Ecology Letters 10: 437–452.
33. Gelman A, Hill J (2007) Data Analysis Using Regression and Multilevel/

Hierarchical Models. Cambridge: Cambridge University Press/.
34. Barbour MG, Major J (1977) Terrestrial Vegetation of California. NY: John

Wiley & Sons.
35. Raven PH, Axelrod DI (1978) Origin and relationships of the California Flora.

Sacramento, CA: Calif. Nat. Plant Soc.

36. Richerson PJ, Lum K (1980) Patterns of plant species and diversity in California:
relation to weather and topography. American Naturalist 116: 504–536.

37. Csuti B (1996) Mapping animal distribution areas for gap analysis. In Gap
anaylsis: a landscape approach to biodiversity planning. Scott JM, Tear TH,

Davis FW, eds. Bethesda, MD: American Scociety for Photogrammetry and

Remote Sensing, pp 135–145.
38. Hurlbert AP, Jetz W (2007) Species richness, hotspots, and the scale-dependence

of range maps in ecology and conservation. Proc. Nat. Acad. Sci. 104:
13384–13389.

39. Stebbins G, Major J (1965) Endemism and speciation in the California flora.

Ecol, Monogr. 35: 1–35.
40. Malcolm JR, Liu C, Neilson RP, Hansen L, Hannah L (2006) Global Warming

and Extinctions of Endemic Species from Biodiversity Hotspots. Conserv Biol
20: 538–548.

41. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than

simple habitat models. Ecol Letters 8: 993–1009.

42. Pearson RG, Dawson TE (2003) Predicting the impacts of climate change on the

distribution of species: are bioclimate envelope models useful? Global Ecol

Biogeogr 12: 361–371.

43. Harrison S, Safford HD, Grace JB, Viers JH, Davies KF (2006) Regional and

local species richness in an insular environment: serpentine plants in California.

Ecol Monogr 76: 41–56.

44. Seabloom EW, Williams JW, Slayback D, Stoms DM, Viers JH, et al. (2006)

Human impacts, plant invasions, and imperiled plant species in California. Ecol

App 16: 1338–1350.

45. Etterson JR, Shaw RG (2001) Constraint to adaptive evolution in response to

global warming. Science 294: 151–154.

46. Chapin FS, Starfield AM (1997) Time lags and novel exosystems in response to

transient climatic change in artic Alaska. Clim Change 35: 449–461.

47. Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the

rear edge matters. Ecol Letters 8: 461–467.

48. Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and

Earlier Spring Increase Western US Forest Wildfire Activity. Science 313:

940–943.

49. Halpin PN (1997) Global climate change and natural-area protection:

management responses and research directions. Ecol Appl 7: 828–843.

50. Sekercioglu CH, Schneider SH, Fay JP, Loarie SR (in press) Climate Change,

Elevational Range Shifts, and Bird Extinctions. Cons Biol.
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