Climate Change Vulnerability Information Upland Group

Sub-habitats:

- Chaparral and serpentine shrublands
- Oak foothill pine woodland
- Oak woodland

Species Groups and Species:

- Yellow-billed magpie
- Valley oak
- Mast-associated species
- Cavity nesters and roosters
- Red-legged frog
- Yellow-legged frog
- Western bumblebee and pollinators
- Swainson's hawk

Exposure

Oak woodlands/Oak foothill pine woodlands

- Significant increase in climatic water deficit (up to 44% in northern Sierra foothills) due to increases in potential evapotranspiration (<u>Hauptfeld et al. 2014b</u>)
- Increased wildfire risk both in terms of fire frequency and total area burnt (<u>Hauptfeld et al. 2014b</u>, <u>Fried et al. 2004</u>)
- Changes in precipitation regime unknown both in direction and magnitude (<u>Hauptfeld et al.</u> 2014b)

Chaparral and serpentine shrublands

- Some increase in climatic water deficit due to increases in potential evapotranspiration (e.g. up to 18% in Panoche Basin (<u>California Climate and Hydrology Change Graph tool, 2015</u>))
- Increased wildfire risk both in terms of fire frequency and return interval (Fried et al. 2004)
- Changes in precipitation regime unknown both in direction and magnitude (Cayan et al. 2008)

Climate Change Vulnerability Information Upland Group

Sensitivity

Oak woodlands/Oak foothill pine woodlands

- Low to moderate sensitivity to changes in temperature and precipitation (<u>Hauptfeld et al.</u> 2014b)
- RCM-based modeling of two endemic oak species suggest substantial range contraction under climate change (Kueppers et al. 2005)
- High sensitivity to changes in disturbance regimes such as wildfire and pests (<u>Hauptfeld et al. 2014b</u>).
- High sensitivity to changes in biological resource use such as human development (<u>Hauptfeld et al. 2014b</u>).

Chaparral and serpentine shrublands

- Chaparral species show low sensitivity to temperature change and moderate sensitivity to precipitation change (<u>Hauptfeld et al. 2014a</u>)
- Chaparral species show high sensitivity to altered fire regimes (<u>Hauptfeld et al. 2014a</u>)
- Serpentine communities show low to moderate sensitivity to climate change (<u>Damschen et al.</u> 2012)

Adaptive Capacity

Oak woodlands/Oak foothill pine woodlands

- Tree species show only moderate capacity to adapt to changes because of long recruitment time (<u>Hauptfeld et al. 2014b</u>)
- High biodiversity provides high potential for ecological adaptation due to multiple species fulfilling functional roles (<u>Hauptfeld et al. 2014b</u>)

Chaparral and serpentine shrublands

- Chaparral species show high capacity to resist stressors because of temperature tolerance, drought tolerance, and extensive seed dormancy (<u>Hauptfeld et al. 2014a</u>)
- Serpentine communities may act as refugia because unfavorable soils limit competitive effects from other plant species (Hauptfeld et al. 2014a)
- Serpentine species often have limited dispersal abilities (<u>Damschen et al. 2012</u>)