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Abstract

Introduction: Resource managers need spatially explicit models of hydrologic response to changes in key
climatic drivers across variable landscape conditions. We demonstrate the utility of a Basin Characterization
Model for California (CA-BCM) to integrate high-resolution data on physical watershed characteristics with
historical or projected climate data to predict watershed-specific hydrologic responses.

Methods: The CA-BCM applies a monthly regional water-balance model to simulate hydrologic responses to
climate at the spatial resolution of a 270-m grid. The model has been calibrated using a total of 159 relatively
unimpaired watersheds for the California region.

Results: As a result of calibration, predicted basin discharge closely matches measured data for validation
watersheds. The CA-BCM recharge and runoff estimates, combined with estimates of snowpack and timing of
snowmelt, provide a basis for assessing variations in water availability. Another important output variable, climatic
water deficit, integrates the combined effects of temperature and rainfall on site-specific soil moisture, a factor
that plants may respond to more directly than air temperature and precipitation alone. Model outputs are
calculated for each grid cell, allowing results to be summarized for a variety of planning units including hillslopes,
watersheds, ecoregions, or political boundaries.

Conclusions: The ability to confidently calculate hydrologic outputs at fine spatial scales provides a new suite of
hydrologic predictor variables that can be used for a variety of purposes, such as projections of changes in water
availability, environmental demand, or distribution of plants and habitats. Here we present the framework of the
CA-BCM model for the California hydrologic region, a test of model performance on 159 watersheds, summary
results for the region for the 1981-2010 time period, and changes since the 1951-1980 time period.
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Introduction

Many current efforts aimed at climate change impact
assessment and adaptation planning focus on water
availability for both human populations and ecological
systems (e.g. Trnka et al. 2012; Parmesan 2006). Projec-
tions of future climate scenarios from global climate
models (GCMs) based on projected amounts and tim-
ing of precipitation and increases in air temperature
are widely used in climate impact assessments (Girvetz
et al. 2009). One of the goals of this study is to improve
our understanding of the fate of precipitation in terres-
trial ecosystems in the context of both historical and
projected coupled climate-hydrology assessments. The
three main pathways of precipitated water in a terres-
trial system include the following: (1) returning to the
air via evaporation and plant transpiration; (2) infiltrat-
ing subsurface into soils and potential recharge to aqui-
fers; and (3) flowing “overland” to create rumoff that
feeds the flow of stream and river channel networks.
These three terms represent the primary components
of an all-purpose water balance that can be customized
using site-specific data on topography, soils, and geology.
Quantifying the relationships and tradeoffs between these
pathways provides for much more detailed projections
of the impacts of variability in water availability on eco-
systems and their inhabitants. Although future climate
change projections are variable due to uncertainties in-
herent to variable emissions scenarios and the range of
available GCMs, mechanistic, process-based, hydrologic
modeling informed by long-term empirical (measured)
data sets can constrain the functional uncertainty of
GCM-based future hydrology projections.

Reducing uncertainty in future climate-hydrology sce-
narios can be achieved by incorporating deterministic
processes and empirically confirmed landscape charac-
teristics into estimates of potential hydrologic outcomes.
Validation of spatially explicit hydrologic models that
quantify the water balance by comparing measured
streamflow with model output is a promising approach
to defining reasonable mechanistic relationships among
climate, hydrology, and the landscape. These relation-
ships can be calibrated using a historical baseline and
then can be applied to assess future climate projections
(Flint and Flint 2012a). The value of such a spatially
validated mechanistic model is more robust projections
for runoff and other components of the water balance
under future climates. Effective ecological projections
and planning in the face of climate change, especially
in arid climates, now demand this level of hydrologic
specificity (e.g. Marcarelli et al. 2010).

The scale of information needed by land and water
managers is often finer than data generated by GCMs
(Littell et al. 2012). Spatial downscaling resolves climate
data to a spatial grain size that can be validated using
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watershed-based methods, applied to local landscapes, or
analyzed across large regions. Downscaling is therefore a
critical first step in developing estimates of water balance
components for watersheds that are robust enough for use
under current or future climates.

Fluctuations in runoff and recharge across multiple
watersheds can be assumed to be monotypic or else
variable in response to variable precipitation: in order
to minimize uncertainty, there is a need for analysts to
be able to model hydrologic cycles based on nearby
conditions at the watershed scale. In addition, since
relatively few watersheds are gaged, physically based
models of hydrologic dynamics are often required to
assess landscapes. For example, for the California hy-
drologic region, which includes all basins that drain
into the state (Figure 1), there were approximately
1,700 streamgages in operation circa 2000, with periods
of record ranging from 1 to 109 years; and only 1,400
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with periods of record 5 years or greater. These stream-
gages represent less than a third of the 5,128 subwater-
sheds in California (www.cain.ice.ucdavis.edu/calwater/),
which is presumably one of the better instrumented re-
gions of the world.

California’s streamgage records display a wide variety
of discharge dynamics, from flashy systems with high
runoff peaks as a result of low permeability bedrock
(such as granites in the Sierra Nevada) or large areas of
impervious urban surfaces, to high baseflows with very
permeable bedrock composition (e.g. volcanic rock; Flint
and Flint 2007; Flint et al. 2011; Tromp-van Meerveld
et al. 2007). The degree of climate aridity and soil type
also affect potential hydrologic response to climate, with
the deep unsaturated zones in arid regions or the deep
soils of California’s Central Valley storing water when
available from wet climate cycles that can be used as
groundwater during dry periods (Flint and Flint 2007).

The objective of this paper is to document the devel-
opment of a regional scale water-balance model that
rigorously incorporates deterministic processes, and de-
scribe its application to the California hydrologic region
at relatively fine spatial scales. The advantages of fine-
scale application will be discussed. The calibration and
validation of this model to measured streamflow pro-
vide confidence in the application of the model to both
historical and future changes in hydrology as a result of
climate that are described in a companion paper (Thorne
et al. 2013). Further descriptions of the datasets discussed
and the post-processing and availability of files are doc-
umented in Thorne et al. (2012). Previous versions of
this model and applications to small regions or basins
have been previously published and include Flint and
Flint (2007, 2012a), Flint et al. (2011, 2012), and
Micheli et al. (2012).

Hydrologic modeling background

Many approaches to hydrologic modeling have been
developed. The U.S. Geological Survey (USGS) Precipi-
tation-Runoff Modeling System (PRMS) is used to
simulate flows under future climate conditions at the
watershed scale (Leavesley et al. 1992; Hay et al. 2011).
This approach requires daily temperature and precipi-
tation values that are applied to individual watersheds
and used in a deterministic, distributed-parameter set-
ting (Risley et al. 2011). The Variable Infiltration Capacity
model (VIC) is a spatially explicit physical hydrology
model, generally run regionally at coarse spatial scales,
that balances energy and water budgets (Liang et al. 1994)
and also runs using daily data (Wood et al. 2002). This
model has also been applied to monthly climate in a
model comparison study by Mauer et al. (2010), who
found that model selection was less important for cap-
turing high flow timing, but that for the low flows, the
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models tested varied, implying a need to vet model
performance, particularly for aridifying regions. These
rainfall-runoff models are specifically calibrated to
streamgage data.

Other hydrologic modeling approaches have used stream-
gage data to validate the model projections using current
or historical data. Alkama et al. (2011) developed the
Interactions between Soil, Biosphere, and Atmosphere-
Total Runoff Integrating Pathways (ISBA-TRIP) and
looked at multi-decadal variability in continental runoff
from 1960-1994 using 154 large rivers with different
lengths of streamgage data for validation. Chiew et al.
(2010) found that five different downscaling techniques
all reproduced observed rainfall, and runoff models used
were capable of reproducing observed streamflows for
eight basins in Australia. These efforts point to the need
to understand the capacity and limitations of hydrologic
models that are used for future projections.

All these rainfall-runoff models rely on soil storage in
some capacity yet do not incorporate bedrock properties;
thus, they neglect the influence of spatially varying bed-
rock permeability in estimates of recharge. Experimental
evaluations of hillslope processes include a few that
have investigated the influence of bedrock permeability
on hydrologic response to climate (Hutchinson and
Moore 2000; Tromp-van Meerveld et al. 2007), while a
few others numerically modeled watersheds including
bedrock properties (Flint and Flint 2006; Jones et al.
2008; Hopp and McDonnell 2009). Generally, these
models are two- or three-dimensional, finite-element
models that explicitly incorporate bedrock but are com-
putationally intensive and cover small areas. Historically,
recharge estimates have relied on monthly water balance
models that incorporate simulations of evapotranspiration
(Alley 1984), inverse modeling (Sanford et al. 2001), or
lysimetry and tracer tests (Gee and Hillel 1988). Water-
balance modeling to assess both recharge and runoff has
been done at the site scale (Flint et al. 2002a; Ragab 1996)
and integrated with various measurements addressing
different spatial scales (Flint et al. 2002b). Watershed-
scale or regional-scale modeling to estimate recharge
and runoff has been done using water-balance model-
ing by Hevesi et al. (2003), Flint et al. (2011), and Flint
and Flint (2007).

Evaluating hydrologic response to climate in California

We used the Basin Characterization Model (BCM) to
model the hydrologic cycle for the California hydrologic
region [Figure 1; modified from Hickman (1993)]. This
paper presents results for two 30-year periods from
1951-2010 for all watersheds and by ecoregion for pre-
cipitation, air temperature, April 1st snowpack, recharge,
runoff, potential evapotranspiration (PET), actual evapo-
transpiration, and climatic water deficit, a parameter
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that is a function of PET and actual evapotranspiration
(Stephenson 1998).

To develop confidence in the application of the model
this paper also evaluates the reliability of hydrologic model
performance by comparing basin discharge, a product
of the runoff and recharge values generated by the
BCM with streamgage data. Historical streamgage data
were assembled from 138 mostly unimpaired basins
(Figure 1), along with reconstructed unimpaired flows
from 21 additional basins, and monthly and vyearly
summaries from streamgages were used to test how
well the BCM model outputs perform on watersheds
with varying bedrock permeability, soil properties, im-
permeable surfaces, and degrees of aridity. The results
of this model testing permit hydrologic simulation per-
formance within the study area due to influences of
landscape variables.

Description of the Basin Characterization Model (BCM)
The Basin Characterization Model (BCM) is a
regional water balance model (Flint and Flint 2007;
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Thorne et al. 2012). The BCM (Figure 2) mechanistically
models the pathways of precipitation into evapotranspir-
ation, infiltration into soils, runoff, or percolation below
the root zone to recharge groundwater. The evapotrans-
piration component is derived through the use of PET
equations (Priestley and Taylor 1972) that rely on the
calculation of solar radiation using slope, aspect, topo-
graphic shading, and atmospheric parameters. For the
purposes of comparison across watersheds (or other land-
scape units), PET in the BCM is not interactive with the
other segments. In other words, potential water demand
from plants is independent from other hydrodynamic
components in the model. The soil storage component of
the model uses soil properties to calculate how much soil
moisture is available for plant evapotranspiration. Soil
storage is also independent from the other hydrologic
dynamics, except that groundwater recharge, calcu-
lated as infiltration below the zone of evapotrans-
piration, is calculated only from surplus, after soil
moisture capacity has been filled. Groundwater re-
charge (recharge) is also tied to runoff, and the
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relationship between the two is driven by the level of
permeability of bedrock.

Therefore, the BCM can model the response of any
given watershed to climate as driven by its energy bal-
ance (based on latitude, longitude, elevation, slope, and
aspect), soil moisture storage capacity, and the charac-
teristics of the materials that are deeper than the rooting
zone, including deep alluvial valleys or bedrock that can
permit percolation into groundwater. The BCM calcu-
lates hydrologic variables on a grid cell basis and can be
run at any spatial resolution, generally limited by data
resolution, computing power, or file storage capabilities.
Grid cell values can be summarized for any spatial pat-
tern, such as watersheds. A post-model calculation for
basin discharge can be performed.

The BCM has several subroutines or modules: the
calculation of potential and actual evapotranspiration
and climatic water deficit; snow accumulation and melt;
available water; and recharge and runoff (Figure 2). The
model begins with climatic inputs of precipitation and
air temperature. This is followed by the calculation of
PET, which relies on an hourly energy-balance calcula-
tion, based on solar radiation, air temperature, and the
Priestley-Taylor equation (Flint and Childs 1991). Clear
sky PET is calculated using a solar radiation model that
incorporates seasonal atmospheric transmissivity with
site parameters of slope, aspect, and topographic shad-
ing (to define the percentage of sky seen for every grid
cell) (Flint and Childs 1987). Hourly PET is aggregated
into monthly time series, and cloudiness corrections are
made on the basis of calibrations using cloudiness data
from National Renewable Energy Laboratory (NREL;
http://www.nrel.gov/; Flint and Flint 2008). Modeled PET
for the southwest United States has been calibrated to
measured PET from California Irrigation Management
Information System (CIMIS) and Arizona Meteorological
Network (AZMET) stations (Flint and Flint 2007).

Using PET and gridded precipitation, maximum and
minimum air temperature, and the approach of the
National Weather Service Snow-17 model (Anderson
1976), the snow module accumulates, sublimates, and
melts snow to produce available water (Figure 2). These
inputs to the water balance have been calibrated regionally
to solar radiation and PET data, and snow cover estimates
have been compared to Moderate Resolution Imaging
Spectroradiometer (MODIS) snow cover maps (Flint and
Flint 2007). This paper presents further snow module cali-
bration work.

The BCM’s available water calculation quantifies water
that is available for use in the remaining parts of the
BCM, which balance watershed hydrologic components
(Figure 2). Available water occupies the soil profile,
where it will become actual evapotranspiration (AET),
and may also result in runoff or recharge, depending
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on the soil storage and permeability of the underlying
bedrock. Total soil-water storage is calculated as poros-
ity multiplied by soil depth. Field capacity [soil water
volume at -0.03 megapascals (MPa)] is the soil water
volume below which gravity drainage is negligible, and
wilting point (soil water volume at —1.5 MPa) is the soil
water volume below which actual evapotranspiration
does not occur (Hillel 1980). Once available water is
calculated, it may exceed total soil storage and become
runoff, or it may be less than total soil storage but
greater than field capacity and become recharge. Any-
thing less than field capacity is calculated as AET, at
the rate of PET for that month, until it reaches wilting
point. This permits the subsequent calculation of climatic
water deficit (CWD).

When soil water is less than total soil storage and
greater than field capacity, soil water greater than field
capacity equals recharge. If recharge is greater than
bedrock permeability (K), then recharge = K and excess
becomes runoff, else it will recharge at K until field
capacity is reached. Runoff and recharge are combined
to calculate basin discharge, and actual evapotranspiration
is subtracted from PET to calculate CWD.

The BCM can be used to identify locations and cli-
matic conditions that generate excess water by quanti-
fying the amount of water available either as runoff
generated throughout a basin or as in-place recharge
(Flint and Flint 2007). Because of the grid-based, sim-
plified nature of the model, with no internal streamflow
routing, long time series for very large areas can be
simulated easily. However, if local unimpaired stream-
flow data are available, estimated recharge and runoff
from each grid cell can be used to calculate basin dis-
charge that can be extrapolated through time for vary-
ing climates. In addition, the application of the model
across landscapes allows for grid-based comparisons
between different areas. Because of the modular and
mechanistic approach used by the BCM, it is flexible
with respect to incorporating new input data or updat-
ing of algorithms should better calculations be derived.
All input files necessary to operate the BCM, and the
output files resulting from the simulations, are shown
in Thorne et al. (2012; Appendix A). A complete list of
all input and output variables and definitions is in-
cluded in Thorne et al. (2012; Appendix B).

Methods

This paper presents the development and calculation
used in the BCM for PET, snow, AET recharge, runoff,
and climatic water deficit. We characterize the results
for a 30-year period from 1981-2010, and changes from
1951-1980, and assess model performance for the runoff
and snow modules by using streamgages and snow
courses.
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Model development

All climate grids and maps of properties require the
same grid scale, in this case 270 m, for model operation.
The historical PRISM precipitation and temperature data
(Daly et al. 2008) were spatially downscaled from 800 m
to 270 m using Gradient-Inverse-Distance-Squared (GIDS)
downscaling (Nalder and Weins 1998). The approach ap-
plies a spatial GIDS weighting to monthly point data by
developing multiple regressions for every fine-resolution
grid cell for every month. Using the PRISM climate vari-
ables and a 270-m-resolution digital elevation model,
parameter weighting is based on the location and eleva-
tion of the coarse-resolution cells surrounding each
fine-resolution cell to predict the climate variable of
the fine-resolution cell (Flint and Flint 2012b; modified
from Nalder and Weins 1998). To remove the “bulls-eye”
effect often associated with certain interpolation schemes
(e.g., kriging, inverse distance squared), the program was
modified to have a search radius that is specified as the
size of grid cell of the coarse-resolution grid. The
modified GIDS spatial downscaling technique does not
introduce additional uncertainty in the downscaling
process and may indeed improve the estimate of the
climate variable by incorporating the deterministic in-
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fluence (such as lapse rates or rain shadows) of location
and elevation on climate (Flint and Flint 2012b).

The climate surfaces and monthly PET were com-
bined with maps of elevation, bedrock permeability (K)
estimated on the basis of geology (Figure 3) (Jennings
1977), and water content at field capacity and wilting
point, porosity and depth from SSURGO soil databases
(NRCS 2006). Available soil-water storage, shown in
Figure 4, is calculated as water content at field capacity
minus water content at wilting point multiplied by soil
depth.

Climatic water deficit (CWD) integrates energy load-
ing and moisture availability from precipitation with
available soil water. CWD is calculated as PET minus
AET, and the actual evapotranspiration is calculated
on the basis of the loss of available soil water through-
out the water year. CWD is generally accumulated an-
nually. The distribution of moisture conditions that
define the amount of water in the soil that can be
maintained for plant use throughout the growing sea-
son and summer dry season corresponds very well to
the established distribution of vegetation types. How-
ever, in many locations shallow soils limit the contri-
bution of precipitation.
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Average annual hydrologic derivatives of runoff, re-
charge, and CWD were analyzed for current climatic
conditions, represented as 1981-2010. An analysis of
change between current climatic conditions and histor-
ical baseline (1951-1980) is also discussed for snow-
pack and the ecologically important variable, CWD.

Model calibration, routing, and performance

The CA-BCM was applied to the entire California re-
gion to provide hydrologic response to current climate
using previous regional calibrations for solar radiation,
PET, snow cover, and groundwater (Flint and Flint
2007; Flint et al. 2011), and a series of 159 watersheds
(basins; Figure 1) were selected for calibration and valid-
ation purposes to provide runoff and recharge for current
climatic conditions. Additional calibration of the snow
module was done for California using snow course data
in the Sierra Nevada and Trinity Mountains, MODIS
snow cover data, and mapped glaciers. To ensure correct
timing of snow accumulation and melt on a volume basis,
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calibration of the snow module was done to compare aver-
age monthly flows from the CA-BCM to unimpaired flows
to the Central Valley for 21 basins that were based on re-
constructions (see DWR 2007 for methodology). Recharge
and runoff were calculated for all grid cells. Recharge
and runoff estimated by the CA-BCM was used with
post-processing equations, described later, to calculate
basin discharge for 159 basins for which we also had
streamflow time series, including measured streamflow
from National Water Information System (NWIS) and
reconstructed unimpaired flows from the California
Department of Water Resources (DWR 2007).

Generally the basins used for calibration were selected
on the basis of lack of impairments, such as urbanization,
agriculture, reservoirs, or diversions. This information was
obtained using land use/land cover maps or NWIS. Gages
located downstream of obvious urban or agricultural areas
(areas where more than approximately 30% of the area
is mapped as urban or agricultural) were not used for
calibration because of the additional water use or return
flows that are unrepresentative of the water-balance cal-
culations done using the BCM. We also sought to use
streamgages with periods of record that extended across
several years to capture the influences of climate variabil-
ity. However, applications in some basins (either highly
impaired or with very few gages) required use of stream-
flow data that reflected impairments or had relatively
short periods of record.

We used 68 basins for calibration, which was done by
iteratively adjusting the estimates of bedrock perme-
ability to optimize the match between calculated basin
discharge and measured historical streamflow. This was
done to alter the proportion of excess water that becomes
recharge or runoff. This is iterative among all calibration
basins because the geologic units are mapped across the
entire state, and if the permeability is changed to optimize
the fit in one basin it changes the permeability wherever
the geology is mapped. Calibration basins represent 9
of the 14 dominant geologic types, and have been cali-
brated to bedrock permeability on the basis of mapped
geology for California (Figure 3). This part of the cali-
bration process is followed by accounting for stream
channel gains and losses to calculate basin discharge and
optimize the fit between total measured volume and si-
mulated volume for the period of record for each gage.
The equations are used to calculate surface-water flow re-
cession, seepage, and baseflow that can extend throughout
the dry season.

In order to evaluate the CA-BCM effectiveness in esti-
mating hydrologic conditions across California, once the
model was calibrated using the 68 calibration basins, we
used an independent set of 91 validation basins to com-
pare estimated results generated using the calibrated
model. Basin discharge was calculated for validation
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basins without the adjustment of bedrock permeability
to improve matches to measured data. This comparative
analysis provides a measure of model performance based
on the ability of the CA-BCM to accurately estimate
basin discharge. Since the basin discharge estimates for
validation basins were developed using the bedrock
permeability values developed and adjusted during the
calibration phase, this method tests how well these per-
meability estimates work when extrapolated across the
entire state. The statistics were developed following the
same procedure as the calibration basins to achieve an
exact match between measured and simulated volumes
for the period of record of the streamgage. See Additional
file 1 for descriptions of 159 calibration and validation
basins, equation coefficients, and goodness-of-fit statistics.

Procedure for calculating basin discharge

As described, the CA-BCM simulates recharge (BCM,},)
and runoff (BCM,,,) for each 270-m grid cell for each
month (7). To compare them to gaged mean monthly
streamflow, all grid cells upstream of the streamgage
are summed for each month to create time series for
BCM,,, and BCM,.. To transform these results into a
form that can be compared to the pattern and amount
of gaged streamflow, the water balance is conceptualized
as consisting of three groundwater reservoirs that are
hydraulically connected (Figure 5). This conceptualization
has been refined since the publication of an earlier version
of BCM (Thorne et al. 2012; Flint et al. 2012). The surface
reservoir (1) consists of all the surface and near surface
processes, such as runoff and seepage, that hold and
direct water toward the stream and that are event
driven (GWiutaces). The shallow groundwater reservoir
(2) consists of the shallow transient saturated zone that
rises and falls seasonally providing much of the baseflow,
but can sometimes also be event driven, and provides
some recession flow (GWihaliow(). The deep groundwater
reservoir (3) is the regional aquifer but can also provide
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some flow to the shallow groundwater reservoir (GWqeep(:)
over long time frames.

A set of empirical discharge equations defines storage
in successive time-steps (i) and performs partitioning.
G Wihallow(;) is the computational method used to extend
streamflow for time-steps when BCM, ;) and BCM,cn;
are zero (e.g. during seasonal and annual dry periods).
For time-steps when BCM, ;) and BCM,(; are non-
zero, the amounts are accumulated for the grid cells up-
stream of a streamgage and are compartmentalized into
the surface and subsurface reservoirs.

GWiurface(s is evaluated as:

GWsurface(i) = GWsmjfuce(z’—l)
+ BCM, i —Surfaceflow;_y) (1)

where the current month’s streamflow Surfaceflow; is:

) SurfaceExp

(2)

and SurfaceScaler and SurfaceExp are coefficients that
are used to match peak and recessional flows. Typically
these coefficients are <1, but in some cases precipitation
data can underrepresent localized peak events and
SurfaceScaler may exceed 1 to account for precipitation
errors and match peak flows.

G Wihallow() is evaluated as:

Surfaceflow(i) = (SurfaceScaler * GW uface(i)

GWshullow(i) = GWshallow(i—l)
+ BCM, iy —shallowflow; —deepflow ;)

(3)

where

Shallowflow(i) = (ShallowScaler * GWWHOW(H))Sh“”"WE"P
(4)

and ShallowScaler and ShallowExp are coefficients (<1)
that are used to match base flow and longer term

N

N BCM,,, BCM
Impaired BCM,, Unimpaired run ¢h  Groundwater
Flows Diversions Agricultural Flows reservolrs
v BCM,,, losses v Discharge Runoff "
Discharge s Surface
Runoff Reservoir qm— }
“— | = Seepoge
OWonssow / L =
(4
'*-: W s — Deep
& Main stem 2 | Tributary
Figure 5 Schematic of the conceptualization of streamflow and groundwater processes represented by equations to calculate basin
discharge from recharge and runoff calculated by the Basin Characterization Model.
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recessional flows, and

Deepﬂow(i) = (Deepscaler * GWShallow(ifl))DeepExp

(5)

and is water subtracted from the shallow reservoir to
simulate deep groundwater recharge and DeepScaler and
DeepExp are coefficients (<1) that are used to help
maintain mass balance between the measured stream-
flow and simulated streamflow by limiting the contribu-
tion of the shallow groundwater reservoir to streamflow.

Streamflow within the basin (upstream of the stream-
gage: Stream;) is calculated by summing the contribution
from the surface and shallow reservoirs:

Stream;) = Surfaceflow; + Shallowflow; (6)
Finally, basin discharge (Discharge;)) is calculated as:
Discharge(;, = WatBal * Stream; (7)

where WatBal is a coefficient (>1 or <1) used to maintain
a water balance between the simulated basin discharge
and the streamgage data or unimpaired flow estimates and
simulates gaining (>1) or losing (<1) streams within the
basin over the longer term (tens of years). This coefficient
may also account for impairments to the basin that impact
the stream as well. While Rch;) and Rung are calculated
by the BCM, all the other components used to calculate
Discharge; are the post-processed portion of the BCM
water balance that is compared to the pattern and amount
of gaged streamflow.

BCM,, and BCM,,, reflect natural hydrologic condi-
tions and do not account for diversions, reservoir stor-
age or releases, urban runoff, groundwater pumping, or
other impairments, and therefore will not exactly match
measured streamflow in impaired basins.

Results

Study basins used for calibration and validation are
generally representative of the range of elevations of the
5,120 basins modeled for the California region (see
Thorne et al., Figure 4), with decreasing representation
at higher elevations. Bedrock permeability due to under-
lying geology is dominated by lower permeability basins
because very high permeability basins, such as those
with alluvial valley fill, do not generally generate enough
stream flow to be captured using streamgages. Similarly,
the range of climates in the state is not well represented
by the set of study calibration basins due to poorer rep-
resentation of desert regions with their lack of stream-
flow data. The range of ecoregions represented by
study basins also reflects the lack of unimpaired
streamgage data in the desert areas, the eastern side of
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the Sierra Nevada, and the deep soils of the Central
Valley (Great Valley).

BCM calibration and performance

The application of the BCM to simulate unimpaired
hydrologic conditions across the entire state relies on the
thoroughness of the calibration to geology and the ef-
fectiveness of matching estimated basin discharge to
corresponding measured streamflow. Calibration statis-
tics (Additional file 1) include the linear regression a
for comparisons of monthly and yearly measured versus
simulated basin discharge and the Nash-Sutcliffe effi-
ciency statistic (E; Nash and Sutcliffe 1970). E is calcu-
lated as 1 minus the ratio of the mean square error to
the variance. The r” statistic is useful as a comparative
statistic as suggested by Legates and McCabe (1999),
whereas the E value provides perhaps a better represen-
tation of goodness-of-fit. E is widely used to evaluate
the performance of hydrologic models and has been
shown to be sensitive to differences in the observed
versus modeled simulated means and variances but also
can be overly sensitive to extreme values, as can also be
the case for r* (Legates and McCabe 1999). E ranges
from negative infinity to 1 with higher values indicating
better agreement. Statistics calculated for the 159 ba-
sins are shown in the Additional file 1, with values
slightly higher for calibration basins than validation ba-
sins. Average goodness-of-fit statistics for all the basins
(calibration plus validation) are E = 0.67, monthly =
0.73 and yearly r* = 0.82. ShallowScaler and DeepScaler
coefficients were 1.00 for all basins in this dataset and
are omitted from the Additional file 1.

For some basins it was necessary to adjust the Sur-
faceScaler coefficient to match peak flows, and the aver-
age coefficient is greater than 1.0, suggesting that the
monthly precipitation data do not accurately reflect the
maximum precipitation within some basins. The average
SurfaceExp coefficient controls the shape of the seasonal
recession curve, and the averages for all the calibration
basins were the same, 0.97, with higher values resulting
in a steeper recession curve and lower values indicating a
slower recession. The ShallowExp coefficient controls the
annual recession and summer baseflows, with an average
of 0.55, and the DeepExp coefficient allows for the match
of multi-year changes in baseflows, with an average of
0.58. If there is little recharge calculated by the BCM, the
DeepExp coefficient is insensitive to adjustment.

The timing of snow accumulation and melt is an im-
portant feature to capture correctly because of the im-
portance of the snowpack to California water resources.
Details shown in Curtis et al. (in review) illustrate good-
ness-of-fit to the presence of glaciers, and accumulation
and melt using maps of remotely sensed snow cover. The
comparisons to measured snow water equivalent were
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generally within 0.3 m for 45 snow courses. Visual com-
parisons of snow accumulation with January and February
snow cover data and snowmelt with April and May snow
cover data indicated good fits (Curtis et al. in review).
The calibration of snow module parameters was done
to optimize the discharge estimated by the CA-BCM in
comparison to reconstructed unimpaired flows for 21
mountain basins draining to the San Francisco Bay Delta
(Figure 1). Average monthly r* for reconstructed unim-
paired flows versus BCM-estimated flows for water
years 1996-2005 was 0.76, yearly r* was 0.91, and E
was 0.69. The discrepancies between monthly and yearly
r” represent a mismatch in monthly timing for these large
basins with long surface water and groundwater travel
times, which is not shown in the yearly r* calculation.
The average r” for the comparison of the reconstructed
and BCM-estimates of average flow for 1996-2005 for
each month, which indicates how well the BCM repre-
sents the timing of snow processes, was 0.91, indicating
an excellent match in the timing of monthly discharge.
The poorest fits were for the Sacramento River near Red
Bluff and the Feather River near Oroville (0.57 and 0.71,
respectively), while the best fits were the major water-
supplying basins in the southern Sierra Nevada (r* = 0.94—
0.98; Tuolumne, Merced, San Joaquin, Kings, and Kaweah
river basins).

Calibration basins evaluated alone have a mean E of
0.73, and generally, basins with the least impairments had
the best calibrations. Sample calibrations are compared
for Dry Creek near Cloverdale in the Russian River basin,
Napa River near Calistoga in the North Bay, Big Creek
above Pine Flat Reservoir near Trimmer, in the Kings
River basin in the southern Sierra Nevada, Aptos Creek at
Aptos in the Santa Cruz mountains, and Sprague River
near Beatty, OR, in the upper Klamath River (Figure 6).
Dry Creek, Napa River, and Big Creek all have moderate
base flows, but based on our estimates Dry Creek loses
45% of both estimated unimpaired runoff and recharge
to the groundwater system, while the Napa River is
gaining from the groundwater system. Big Creek, located
in granitic geology towards the lower elevations of the
Kings River basin, is also a gaining stream.

Our hypothesis is that the model fits less well where
there are many urban impacts that cannot be fully taken
into account by the CA-BCM. There are several cases
where urbanization and agriculture impacted the calibra-
tion, such as for Aptos Creek at Aptos (Figure 6d), and
where urbanization resulted in very high peak flows as a
result of impermeable urban areas enhancing runoff,
both during precipitation events where there is reduced
infiltration, and during the summer when urban runoff
is enhanced, neither of which is taken into account in
the CA-BCM. An example of the impact of diversions
and groundwater pumping for public use on measured
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discharge values can be seen in the difference between
the Merced River at Happy Isles, upstream of Yosemite
Village, and the Merced River at Pohono, downstream
of Yosemite Village, where the percentage of runoff
needs to be reduced to 45% to match measured flows
(Additional file 1).

The mean E for validation basins evaluated alone is 0.59
(0.69 for basins with reconstructed unimpaired flows),
with the upper Klamath and small basins in the Modoc
Plateau volcanics performing the poorest (Sprague River
near Beatty OR E = 0.35; Figure 6e). This is likely due
to the large groundwater reservoir in the volcanics that
has very long travel times from precipitation input to
outflow in streams. The Sprague River basin also has a
large agricultural component and return flows, so any
attempt during calibration to maintain a match in volumes
results in an overestimate of the peak flows. The presence
of a groundwater reservoir also shows in the differences
between the r* values for the monthly and yearly values
(0.36 versus 0.82, respectively), which indicate if there
are lags in the monthly calibration between measured
and simulated flows that are negated when calculated
yearly.

CA-BCM climate and hydrology

Our study summarizes the following estimates gener-
ated by the CA-BCM: precipitation, air temperature, PET,
actual evapotranspiration, snow water equivalent (SWE),
runoff, recharge, and climatic water deficit for the 1981—
2010 time period and also evaluates change in comparison
to the 1951-1980 time period.

Climate has been variable over time with general in-
creases in precipitation, excepting northwestern CA and
the Modoc Plateau, and increases in air temperature
throughout the state by up to 1°C. As a result PET has
increased throughout the state by about 3% (Table 1).
Recharge and runoff have changed corresponding to
changes in precipitation, and climatic water deficit has
gone up in most ecoregions.

The hydrologic response to climate variability experi-
enced from 1981 to 2010 is shown by responses in runoff
and recharge for California (Figure 7). Average annual
runoff and recharge are highest in locations with the
greatest estimated excess water, generally in locations
where annual snowpack is highest, such as in the Sierra
Nevada and Trinity Mountains. Spatial patterns of runoff
and recharge differ based on variability in bedrock perme-
ability and potential soil storage. However, in locations
with similar bedrock permeability, seasonal climate pat-
terns are what dictate whether excess water becomes
runoff or recharge. For example, locations on the North
coast dominated by sandstones have bedrock perme-
abilities similar to those of the granites in the southern
Sierra Nevada, yet the resulting hydrology is quite
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Figure 6 Calibration time series comparing measured and estimated basin discharge in millions of cubic meters, for five calibration
basins: (a) Dry Creek near Cloverdale, CA, (b) Napa River at Calistoga, CA, (c) Big Creek above Pine Flat Reservoir near Trimmer, CA, (d) Aptos
Creek at Aptos, CA, and (e) Sprague River near Beatty, OR. Calibration statistics, Nash-Sutcliffe efficiency tatistic (E), and monthly r2 are included.
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Table 1 Climate and hydrologic variables for modified Jepson ecoregions in California

North- Cascade Modoc Central Great Sierra  East of Sierra South- Mojave Sonoran
western CA ranges plateau western CA Valley Nevada Nevada western CA Desert Desert
Precipitation (mm) Mean 1,467 1,120 435 593 341 955 309 466 155 114
Change -334 9.5 -1.7 28.2 245 15.6 234 2.5 13.6 129
% Change —2% 1% 0% 5% 8% 2% 8% 1% 10% 13%
Minimum air Mean 6.0 3.2 04 79 9.7 38 1.0 9.0 10.5 14.8
temperature (0 e 04 03 05 06 07 09 09 09 07 10
Maximum air Mean 189 17.1 154 219 244 17.3 16.7 229 254 30.0
temperature Q) e 02 03 0.1 03 03 03 03 04 04 03
Potential Mean 1,042 1,055 1,018 1,279 1365 1,179 1,194 1,381 1,470 1,523
fﬁgf“ansmaﬂon Change 104 92 137 219 203 237 301 356 270 265
% Change 1% 1% 1% 2% 2% 2% 3% 3% 2% 2%
Recharge (mm) Mean 504 174 42 103 40 219 49 59 4 1
Change —24.2 -19 -1.0 4.0 45 04 59 -3.0 09 03
% Change —5% -1% -2% 4% 13% 0% 14% -5% 26% 35%
Runoff (mm) Mean 492 507 87 120 1M 319 61 80 3 5
Change -223 73 24 11.9 25 7.3 88 -26 05 0.7
% Change —4% 1% 3% 11% 30% 2% 17% -3% 25% 17%
Climatic water Mean 558 535 575 863 1,065 638 778 1,011 1,293 1,339
deficit (mm) Change 12 93 250 99 20 248 360 307 204 135
% Change 0% 2% 5% 1% 0% 4% 5% 3% 2% 1%
Snow water Mean 85 227 91 1 0 241 102 12 0 0
equivalent (mm) . 0e 330 ~340  -160 00 00 -270 80 20 00 00
% Change 39% 15% 18% 0% 0% 11% —8% 17% 0% 0%

Mean value for 1981-2010 and change from 1951-1980.

different. Storms in the Sierra Nevada generate precipita-
tion that saturates the soils and becomes runoff. Spring-
time snowmelt can also saturate the soils as the majority
of an entire winter’s precipitation stored as snowpack is
released onto the landscape in a couple of months. This
differs from the climate on the North coast where the
coastal climate results in more evenly distributed temporal
patterns of precipitation that allows time for the bedrock
to recharge with relatively less runoftf.

The change in climate over the last half of the 20th
century is exemplified by the observed changes in snow-
pack in California, which integrate the effects of precipi-
tation and air temperature variability on the dominant
water resource in California that is relied upon for water
supply. This snowpack region is the warmest in the
western US (Lundquist et al. 2009) and is the most sen-
sitive to small changes in air temperature. This is illus-
trated by the change in April 1st snowpack, calculated
as snow water equivalent (SWE), between the periods
1981-2010 and 1951-1980 (Figure 8), where SWE has
diminished the most in extent in the northern portions
of the state by up to 500 mm/year, whereas the highest
elevation SWE in the central and southern Sierra Nevada

has actually increased in some locations up to 500 mm/
year. The increases in air temperature in the Sierra
Nevada over the 30-year time periods, 0.3°C maximum
air temperature and 0.9°C minimum air temperature
(Table 1), allow for more moisture to be held in the air,
resulting in increases in precipitation, which at high
elevations occurs as snow. Although the rising air tem-
peratures have resulted in a rise in the lowest elevation
at which snowpack may develop, locations with mini-
mum winter temperatures well below freezing have
generally increased in SWE, such as Mount Shasta and
the high elevation southern Sierra Nevada (Mote 2006).
The loss of April 1st SWE results in less runoff to ex-
tend the water resource throughout the summer sea-
son. This has implications for recharge and climatic
water deficit as well. Average April 1st SWE has de-
clined in all ecoregions that have an annual snowpack,
except the eastern Sierra Nevada, by as much as 39% in
northwestern CA, and the dominant snowpack region,
the Sierra Nevada, has seen a reduction of 11% over the
two time periods.

CWD patterns over the California region are similar
to those of PET (Figure 9a, c), with CWD as low as
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Figure 7 Maps of runoff and recharge for water years 1981-2010 calculated by the Basin Characterization Model for the California
hydrologic region.
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400 mm/year in mountain regions and as high as 1,700
mm/year in deserts and regions with low precipitation.
The actual evapotranspiration is highest where there is
ample available water to maintain evapotranspiration
(Figure 9b). The lowest CWD is in regions with snowpack
that, as it melts in the springtime, provides a longer dur-
ation of available water, thus maintaining a lower annual
deficit, even despite shallow soils. Locations in the south
with higher PET have higher deficits.

Fine-scale applications

Although precipitation has generally increased between
the two time periods evaluated here for California, the
increases in air temperature and PET translate into in-
creases in CWD in many locations, particularly those
dominated by snowpack, such as the Sierra Nevada or
Modoc Plateau ecoregions, which have increased in CWD
by 4 and 5%, respectively, over the two 30-year periods.

Fine-scale modeling and analysis permit the influence
of elevation and aspect to appear as CWD changes, relying
also on the fine-scale attributes of mapped soils. Examples
of CWD under higher than average annual precipitation
(water year 1998; Figure 10a) and lower than average
annual precipitation (water year 1977; Figure 10b) indicate
the influence of energy loading on slopes. This area west
of Lake Tahoe in the American River basin has annual
snowpack that provides low CWD in a wet year across the
area. In fact, a wet year looks very much like an average
year in other parts of the Sierra Nevada because the soils
are generally shallow and excess water readily becomes
runoff. A dry year shows the influence of less snowpack,
and much of the landscape on the left side of Figure 10b,
which is at lower elevations and receives less snow, dries
out over the season, thereby increasing the annual CWD.
This is true except for landscapes shown at the bottom of
both figures, noted in the oval, where in the center is a
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Figure 8 Map of change in April 1st snow water equivalent
between water years 1951-1980 and 1981-2010.

large north-facing hillslope that maintains low energy
loading and thus a low CWD, even in a dry year. The ap-
plication of water-balance modeling at 270-m resolution
allows the representation of this process at the scale of
hillslopes.

The evaluation of extreme years and the potential im-
plications of projected climate change can also be seen
in the depiction of precipitation, potential evapotrans-
piration, actual evapotranspiration, runoff, and recharge
for a landscape-scale view across northern California
(Figure 11). This view from the North Bay counties across
the Sacramento Valley and into the northern Sierra
Nevada illustrates the range in precipitation across the
region in wet and dry years, while the PET changes little
due to air temperature. Actual evapotranspiration in 1998
is high in soils that can store water, such as those in the
Central Valley, or where it is cooler with shallower soils,
such as in the eastern foothills of the Sierra Nevada. In a
dry year the Central Valley has lower actual evapotranspir-
ation because supply was low. Low rainfall corresponds
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to low recharge or runoff as well, while in a wet year
recharge is high in the Central Valley deep soils and
runoff is high in locations with low permeability bed-
rock or shallow soils (Figure 11).

Additional implications of fine-scale modeling can be
seen in two depictions of the change in CWD between
the periods 1981-2010 and 1951-1980. In Figure 12a,
located in the Modoc Plateau, most of the area in the
figure consists of warmer colors, indicating an increase in
CWD. At this scale it is noticeable by the rings around the
mountain tops indicating that the snow line has receded
up the mountainsides in two locations, increasing the
CWD in the band no longer covered by snow. In a loca-
tion with no snowpack in the central coast, just east of
Monterey Bay (Figure 12b), the change in climate over
this local area has increased the CWD variably across
the landscape. It is clear at a fine scale that north-facing
slopes are more resilient to change in climate and that sev-
eral valleys have not changed as much as the surrounding
uplands, which is due to deeper soils in the valley bottoms
maintaining moisture longer into the season.

Discussion
California hydrologic region
Steep elevation gradients, a long temperate coastline, a
large latitudinal extent, and a variety of geological histories
provide the regional spatial framework for assessing po-
tential hydrologic response across the California hydro-
logic region. Inclusion of topographic and soils details
creates a more comprehensive view of underlying water-
shed variability that, in turn, we know supports high levels
of biodiversity. The range of hydrologic response to these
conditions across California is exemplified by the range
and variation in runoff and recharge (ranging from ap-
proximately O to over 500 mm/year), while the dynamics
of snowpack indicate the vulnerability of a region reliant
on springtime snowpack to rising air temperatures.
Increasingly warmer climate conditions over time drive
estimated increases in CWD, which are highly sensitive to
increases in air temperature. Increases in precipitation do
not uniformly lower end-of-year CWD because resulting
increases in excess water can be either retained in soil stor-
age or converted to recharge or runoff early in the season.
Therefore, even in the face of potentially increasing
amounts of seasonal precipitation in this Mediterranean cli-
mate, with higher temperatures CWD tends to increase
during the months following the conclusion of the rainy
period in a way that essentially offsets any effects of precipi-
tation increases on soil moisture. This fine-scale representa-
tion of CWD dynamics enables the identification of
landscape features and habitats that may resist significant
climatic changes in the future. We observe that north-
facing slopes with relatively low energy loads are less
sensitive in terms of drought stress to dramatically lower-
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than-average precipitation years. We also observe that the
CA-BCM validates that deeper soils in valley bottoms are
capable of sustaining more moisture longer into the dry
season than environments with thin soils. Using these
tools, managers seeking to maximize biodiversity and
ecosystem health can identify local climate refugia for
vulnerable species.

BCM performance

The utility of the BCM to assess unimpaired hydrologic
conditions for California relies on thoroughly character-
izing underlying geology based in part on the use of
streamgage data to calibrate the hydrologic balance be-
tween recharge and runoff. In this study we assembled
runoff data from 159 streamgages and reconstructions,
which permitted an assessment of how well the CA-BCM
model performs at integrating all the hydrologic balance
components. Other components of the CA-BCM could
potentially also be calibrated as well (Figure 2). For ex-
ample, model calibrations were previously performed for
the solar radiation and evapotranspiration components
(Flint and Flint 2007). Soil moisture and climatic water
deficit could be field verified as well through spatial
and temporal sampling of plant evapotranspiration
rates (e.g. Ryu et al. 2008) and by direct measures of soil
moisture (e.g. Mittelbach et al. 2011). The application of
this mechanistic model permits a look at how conditions
have changed over time and provides an illustration of

where basins are more or less sensitive to changes in cli-
mate, where runoff or recharge processes are dominant,
and where climate-driven moisture stresses to the land-
scape are likely to be more or less profound.

Simulated and measured results were comparable in
basins throughout the state for both unimpaired and im-
paired (including impacts due to urban and agricultural
conditions) basins based on close matches of estimated
basin discharge to measured streamflow. Basins with the
lowest BCM performance in terms of calibration statis-
tics contained unaccounted-for land uses, such as agricul-
tural or municipal diversions or return flows, or water
impoundments such as reservoirs. These results provide
reasonable confidence in the spatially distributed BCM es-
timates of recharge, runoff, and climatic water deficit
throughout the entire state, including ungaged basins.
However, runoff in the BCM is not explicitly routed within
the model, and basin discharge requires post-processing
using measured streamflow to determine the relative
contributions of recharge and runoff in a basin to gains
and losses in streamflow. Once established, these compo-
nents can be used to extrapolate basin discharge through
time, assuming no changes in impairments. Uncertain-
ties in calibration do not impact estimates of CWD as
this calculation does not rely on the bedrock perme-
ability used to partition the excess water into recharge
and run off. Soil water conditions are a function of soil
properties, available water from precipitation, and
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evapotranspiration. Therefore, the BCM calculation of
CWD equals PET minus AET (Stephenson 1998) re-
flects the uncertainties inherent in the climate data, in
the soil properties from soil mapping, and in PET.

Model and data limitations

A highly valuable application of the BCM beyond the
estimates of spatially distributed recharge and runoff
would be to estimate basin discharge for ungaged basins.
We attempted to correlate equation coefficients (scaling
factors and exponents in Equations 1 to 7) developed in
gaged basins to landscape variables such as geology, soil
properties, slope, basin area, or aridity to provide an em-
pirical basis for estimating discharge in ungaged basins.
This endeavor was unsuccessful on a statistically significant
basis across all calibration basins, possibly due to potential
errors in the soils or geology maps, or in the PRISM climate

data, or due to human activities that are affecting basin hy-
drology at the watershed scale. However, general regional
characteristics that influence the hydrology in a basin can
be used to extrapolate discharge to ungaged basins. For ex-
ample, observations of high baseflow in basins with high
bedrock permeability might be correlated across multiple
basins, and basins of similar size and soils in close proxim-
ity may share equation coefficients to estimate discharge.
Since the BCM is a mechanistic model, driven by a series
of assumptions about the physical environment, we argue
that the model output is of value for regional comparisons
of watersheds, even in the absence of independent valid-
ation for ungaged basins. As with any rainfall-runoff model
development, there is a good deal of art and empiricism as-
sociated with calibration, and extrapolation of discharge to
ungaged basins remains an uncertain enterprise. However,
if we assume that the watershed properties and climate are
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Wet year 1998

Figure 11 Landscape-scale maps of precipitation, potential evapotranspiration, actual evapotranspiration, recharge and runoff for a
wet year, water year 1998, and a dry year, water year 1977. Inset location shown in Figure 9c.
.

Dry year 1977

pre- wrTew

correctly characterized, the BCM hydrologic outputs are
based on properties that are spatially distributed through-
out the study area, and the calculations are performed con-
sistently across all basins, this provides a significant level of
confidence in results for regional cross-comparisons of
basins.

Some of the potential sources of error in input vari-
ables are well known to geographers. Soils maps are par-
ticularly prone to error since accurate measures of soil

depth are difficult to measure and currently unobtain-
able for large areas. County-level soils maps (SSURGO)
provide very good spatial detail on soil types and proper-
ties but are limited in locations with soil depths greater
than 2 m.

Human activities are extensive in California and likely
have some degree of impact in nearly every basin. Activ-
ities that can affect the hydrologic cycle at the watershed
scale include small impoundments, direct pumping from
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Figure 12 Close-up maps of the change in climatic water deficit
between water years 1981-2010 and 1951-1980 for areas (a) in
the Modoc Plateau and (b) central coast of California. Inset
location shown in Figure 9c.

streams for urban or agricultural use, construction of
impermeable surfaces, and changes to the natural land
cover. These can affect variously the partitioning of in-
put PPT to different pathways in the hydrologic cycle
and also the actual evapotranspiration (AET) and PET
calculated as part of the model. We were not able to
make a detailed assessment of the influence of human

Page 18 of 21

activities on the overall model accuracy and feel this is a
future research agenda, particularly for basins with several
gages that are placed below and above areas of human
disturbance. If the model is adequately parameterized
to estimate basin discharge in unimpaired locations,
then the model can be used to assess nearby locations
with similar physical watershed characteristics that are
ungaged. Similarly, the model could be used to assess
the degree of impact that impairments may have on
basin discharge.

The estimate of spatially distributed runoff does not
equal basin discharge as measured at a streamgage with-
out post-processing to determine the components of run-
off and recharge that contribute to stream channel gains
and losses, which must be done using some measured data
for a given basin. The resultant parameters corresponding
to the gains and losses generally reflect climatic conditions
and geologic setting, but at the scale of California have
not been determined to a degree that allows for the direct
extrapolation of basin discharge to all ungaged basins.
The spatial distribution of runoff and recharge, however,
provides relative differences over the region and can indi-
cate the differences in sensitivity of basins to changes in
climate. The estimates of changes in soil moisture and
CWD do not rely on interpretation of bedrock permeabil-
ity, and uncertainties correspond more closely with those
of the mapped soil properties and climate data.

Because the BCM model outputs are calculated on a
grid-cell basis, results can be summarized across land-
scapes using summary units of any size of interest such as
watersheds, ecoregions, or political boundaries. The ability
to spatially project hydrologic model outputs permits the
cross-comparison of these landscape delineations, with
mapped outputs of interest to various fields of research.
The limitations to the appropriate spatial application can
be quite small if the underlying input properties are accur-
ate because the energy load calculations are based on the
resolution of the digital elevation model, in this case, 270
m. The variables most closely associated with energy loads
(PET, AET, CWD) could potentially be applied at the
hillslope scale, given the resolution of SSURGO soils
data for most locations. However, it is recommended
that most hydrologic applications be considered at no
less than the size of planning watersheds (Natural Re-
sources Conservation Service’s California Interagency
Watershed Mapping Committee; CalWater 1999).

The ability to calculate hydrologic outputs using a
transparent, mechanistic approach, and at fine spatial
scales, permits a new set of predictor variables to be
used in the spatial projection of suitable plant ranges or
habitats (e.g. Williams et al. 2009). This is a particularly
important opportunity for ecologists and conservation
biologists because species distribution models are one of
the primary methods of evaluating the susceptibility of
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species to climate change (e.g. Guisan and Thuiller Guisan
and Thuiller 2005; Loarie et al. 2009). The discharge and
groundwater outputs can inform water management for
storage, human consumption, and anadromous fisheries.
One of the most important variables that BCM calculates
is climatic water deficit (Stephenson 1998). Natural re-
source managers and field ecologists are particularly inter-
ested in this variable, as it integrates site conditions with
temperature and moisture, and is therefore a factor that
plants may respond to more directly than climate variables
alone, particularly in regions with pronounced seasons.
The strength of the BCM in portraying CWD is that dif-
ferent watersheds can be compared by identifying the area-
weighted mean value. Therefore relative differences across
hydrologic California are comparable. Soil moisture and cli-
matic water deficit are also of interest for tracking suitabil-
ity of rain-fed agriculture and for assessment of suitability
of natural environments for component plants and animals.

Conclusions

The downscaling of historical climate data for application
to the BCM to calculate hydrologic response to ongoing
changes in climate has provided a dataset rich in regional
representation of climatic and hydrologic trends, but
spatially detailed enough to provide fine-scale examples
of local impacts of climate on the landscape.

Landscape responses to current changes in climate can
be moderated in locations with relatively low energy loads,
such as north-facing hillslopes or coastal regions with
frequent cloud cover. Soil also amplifies or moderates
the hydrologic response of the landscape depending on
whether soils are thin and excess water is easily lost to
runoff or recharge or whether they are thick and therefore
can maintain moisture longer into the dry season. Moun-
tainous regions seasonally occupied by snowpack are quite
sensitive to ongoing changes in climate as the timing of
snowmelt is enhanced by warming thus changing the
length of the wet season and extending the dry season for
all regions downstream that rely on snowpack for public
and agricultural use.

The CA-BCM, using the best map data available, still
shows we have not captured all the details that drive
individual watershed dynamics. However, for compara-
tive purposes across a large number of watersheds and
ecoregions, the relative consistency of the model permits
informative interpretations. This is, in essence, very similar
to the way in which Global Climate Models themselves
run, in that they provide a platform for intercomparison of
regions even while they may be more or less accurate when
compared to ground-based measurements. In this regard,
then, the next challenge for modelers of these physical (and
biophysical) processes is to determine how to incorporate
an increasingly finer scale of detail as these data become
available. CA-BCM output maps indicate where on the
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landscape significant changes in the hydrologic cycle may
occur. If, at the watershed scale, basin discharge or recharge
boundary conditions are needed, then this study suggests
some local calibration is necessary. However, if the basins
are purely unimpaired, then nearby or adjacent basin
calibration is likely to suffice.

The consistent patterns offered by the CA-BCM for a
wide variety of biophysical variables make the model output
of particular interest to landscape ecologists, including
those interested in modeling the biogeographic response of
species and vegetation types to future changes in climate.
Part of the interest derives from the fact that future
moisture conditions are much more difficult to project
than future temperature, a fact that emerges when com-
paring the outputs of future GCMs for temperature and
precipitation, where there is much higher agreement
between models for temperature. Having a mechanistic
model that captures the dynamics of the water that is
predicted permits a better estimation of hydrologic
conditions under different scenarios, which in turn can
provide a view to the range of potential impacts to water
available for natural processes and for human uses. It also
provides an opportunity to compare estimated unimpaired
conditions to current levels of impairment, given sufficient
site-specific data.

Because of the modular nature of the Basin Charac-
terization Model, it is possible to make two types of im-
provements. First, any particular module’s calculations
may be updated and improved. An example would be if
PET values for different vegetation types could be calcu-
lated, these could be applied using an existing vegetation
map to render more accuracy in the plant-driven parts of
the model. Second, input data maps may be updated and
improved. Ongoing refinements are currently to apply a
radiation function to the Snow-17 snowmelt algorithm,
which relies solely on air temperature to melt snow. This
will enhance the timing of snowmelt in mountainous
regions, especially during warming conditions when
springtime snowmelt occurs earlier in the season and
the sun angle is lower on the horizon inducing more
variation in shading. Additionally, local studies are pro-
viding more information for improved calibrations and
refinements in geologic maps.
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Equation Coefficients

Goodness-of-fit

Statistics**

Table 1. Streamgages and basins used in calibration and validation of the Basin Characterization Model for basins in California, basin
discharge equation coefficients, and goodness-of-fit statistics.

Years Jepson
NWIS Lat. Long. of eco- Area Surface  Surface Shallow Deep Wat Month Year Urban  Agric

Streamgage name stationID  (dd) (dd) record region* (kmz) Scaler Exp Exp Exp  Bal r r? E (%) (%)
Calibration basins

Aptos C A Aptos Ca 11159700 36.98 -121.90 14 CW 12 1.00 0.97 0.75 0.85 0.86 0.78 0.88 0.73 21.4 0.1

Aptos C Nr Aptos Ca 11159690 37.00 -121.91 14 cw 10 1.00 0.97 0.78 0.85 0.52 0.79 0.71 0.78 0.3 0.3

Arroyo Corte Madera

D Pres A Mill Valley Ca 11460100 37.90 -122.54 20 CW 5 1.00 0.97 0.40 0.60 0.95 0.88 095 0.83 53.3 0.0

Arroyo Hondo Nr San

Jose Ca 11173200 37.46 -121.77 18 CwW 77 1.00 0.97 0.54 0.60 1.65 0.82 0.79 0.70 0.3 0.0

Arroyo Valle Bl Lang

Cn Nr Livermore Ca 11176400 37.56 -121.68 36 CW 130 1.15 0.97 0.46 0.50 0.78 0.78 0.80 0.68 0.5 1.0

Bear C A Boulder C Ca 11160060 37.13 -122.12 15 CW 16 1.00 0.97 0.62 0.85 0.97 0.77 0.88 0.71 4.1 0.6

Boulder C At Boulder

Creek Ca 11160070 37.13 -122.12 16 CwW 11 1.00 0.98 0.74 085 1.21 0.91 097 0.91 12.4 0.0

Corralitos CA

Freedom Ca 11159200 36.94 -121.77 43 CW 28 1.00 0.98 0.50 0.85 041 0.75 0.84 0.75 18.0 26.7

Corralitos C Nr

Corralitos Ca 11159150 37.01  -121.81 15 cw 11 1.00 0.97 0.59 0.85 0.78 0.79 0.85 0.77 0.3 1.5

Coyote C Nr Gilroy Ca 11169800 37.08 -121.50 22 CW 109 1.00 0.98 0.32 0.50 1.51 0.71 0.74 0.54 0.2 0.5

Cull C Ab Cull CRes Nr

Castro Valley Ca 11180960 37.72 -122.06 21 CW 6 1.00 0.97 0.25 0.50 1.32 0.80 0.83 0.68 2.2 0.0

Laguna C Nr

Davenport Ca 11161590 37.03  -122.13 7 cw 3 1.00 0.97 0.85 0.70 0.62 0.66 0.89 0.64 8.1 0.0

Lagunitas C A Sp

Taylor State Pk Ca 11460400 38.03 -122.74 17 CW 34 1.00 0.98 0.58 0.60 0.78 0.75 0.84 0.62 8.6 0.0

Little Pine C Nr Alamo

Ca 11183700 37.88  -121.98 15 cw 1 1.30 0.94 0.26 0.60 0.95 0.82 0.89 0.46 1.9 0.0

Majors C Nr Santa Cruz

Ca 11161570 37.00 -122.12 7 CW 4 1.00 0.97 0.75 0.60 0.70 0.80 0.85 0.79 7.3 0.5

Marsh C Nr Byron Ca 11337500 37.87 -121.73 31 cw 43 1.10 0.98 0.40 0.60 0.97 0.58 0.82 0.26 1.9 0.5

Novato C A Novato Ca 11459500 38.11  -122.58 53 cw 18 1.00 0.99 0.42 0.60 0.62 0.77 0.90 0.64 15.6 0.1

Pilarcitos C A Half

Moon Bay Ca 11162630 37.47 -122.44 33 CW 27 1.00 0.98 0.52 040 1.05 0.78 0.81 0.74 6.2 3.8

Pinole C A Pinole Ca 11182100 37.97 -122.25 39 Cw 10 1.00 0.95 0.45 0.60 1.36 0.78 0.84 0.67 3.0 0.9

San Antonio C Nr 11459300 38.18 -122.62 6 CW 29 1.00 0.99 0.35 0.60 0.86 0.93 0.97 0.92 0.5 8.9



Petaluma Ca
San Benito R Nr Willow

Creek School Ca 11156500 36.61 -121.20 60 CwW 249 1.00 0.94 0.45 0.50 0.82 0.68 0.85 0.66 0.2 0.2
San Lorenzo R A Big

Trees Ca 11160500 37.04 -122.07 63 CwW 106 1.00 0.98 0.78 0.85 0.18 0.84 090 0.83 17.0 0.1
San Lorenzo R A Santa

Cruz Ca 11161000 36.99 -122.03 20 CwW 115 1.00 0.98 0.81 090 0.15 0.87 0.85 0.86 29.6 0.3
San Lorenzo R Nr

Boulder C Ca 11160020 37.21 -122.15 24 CwW 6 1.00 0.97 0.67 0.80 1.23 0.83 090 0.83 0.2 0.0
San Ramon C A San

Ramon Ca 11182500 37.77 -122.00 47 CwW 6 1.10 0.97 0.40 0.60 1.32 0.77 0.83 0.77 8.7 0.0
San Vicente C Nr

Davenport Ca 11161800 37.06 -122.18 16 CwW 6 1.00 0.97 0.85 0.50 0.59 0.66 0.85 0.48 8.7 2.1
Saratoga C A Saratoga

Ca 11169500 37.25 -122.04 66 CwW 9 1.20 0.97 0.50 0.70 090 0.71 0.89 0.69 9.2 0.8
Scott C Ab Little C Nr

Davenport Ca 11161900 37.06 -122.23 15 CwW 25 1.00 0.97 0.68 0.80 1.00 0.85 094 0.84 1.2 0.1
Soquel C A Soquel Ca 11160000 36.99 -121.96 49 CwW 40 1.00 0.97 0.74 0.85 1.55 0.87 0.85 0.85 6.0 3.3
Uvas C Ab Uvas Res Nr

Morgan Hill Ca 11153900 37.09 -121.72 21 CwW 21 1.00 0.97 0.54 040 1.05 0.85 0.89 0.60 0.5 0.0
Wb Soquel C Nr Soquel

Ca 11159800 37.05 -121.94 14 CwW 12 1.00 0.97 0.75 0.85 1.03 0.85 0.80 0.85 7.0 3.3
Zayante C A Zayante Ca 11160300 37.09 -122.05 35 CwW 11 1.00 0.98 0.70 0.85 0.95 0.83 0.93 0.82 4.7 0.0
Austin C Nr Cazadero Ca 11467200 38.50 -123.07 8 NW 63 1.00 0.98 0.45 0.60 1.26 0.92 0.87 0.91 1.2 0.0
Bear C Nr Rumsey Ca 11451720 38.94 -122.35 25 NW 100 1.10 0.97 0.57 0.60 096 091 0.90 0.77 0.2 3.3
Brush C A Santa Rosa CA 11466065 38.46 -122.68 5 NW 10 1.00 0.99 0.40 0.60 1.95 0.94 0.85 0.94 43.0 2.4
Dry C Nr Cloverdale Ca 11464500 38.75 -123.09 39 NW 88 1.00 0.98 0.50 0.60 0.55 0.92 0.92 0.92 0.0 0.0
Dry C Nr Napa Ca 11457000 38.36 -122.37 16 NW 17 1.00 0.99 0.35 0.60 1.18 0.80 0.88 0.80 0.1 5.7
Dry C Nr Yorkville Ca 11464400 38.79 -123.16 10 NW 56 1.00 0.98 0.50 0.60 0.79 0.92 0.98 0.92 0.1 0.7
Ef Russian R Nr Ukiah Ca 11462000 39.20 -123.19 49 NW 105 1.00 0.95 0.66 0.60 2.35 0.57 0.56 0.55 11 9.0
Feliz C Nr Hopland Ca 11462700 38.97 -123.14 8 NW 31 1.00 0.98 0.20 0.60 284 0.77 0.56 0.74 0.0 11
Franz C Nr Kellogg Ca 11463940 38.61 -122.70 5 NW 16 1.00 0.97 0.40 0.30 1.75 0.84 0.85 0.84 0.2 13.3
Maacama C Nr Kellogg

Ca 11463900 38.64 -122.76 21 NW 43 1.00 0.98 0.45 0.60 1.10 0.94 0.96 0.94 0.2 5.9
Mark West C Nr Mirabel

Heights CA 11466800 38.49 -122.85 5 NW 251 1.00 0.97 0.55 0.60 0.38 0.87 099 0.87 404 25.3
Mark West C Nr

Windsor CA 11465500 38.51 -122.77 2 NW 43 1.00 0.99 0.52 0.60 094 0.98 na 0.98 6.6 1.1
Matanzas C A Santa

Rosa CA 11466170 38.44 -122.70 7 NW 21 1.00 0.99 0.51 0.60 1.24 0.87 097 0.86 235 3.3
Milliken C Nr Napa 11458100 38.34 -122.27 13 NW 17 1.00 0.98 0.45 0.60 1.83 0.86 090 0.86 10.2 5.6
Napa R Nr St Helena Ca 11456000 38.50 -122.43 60 NW 81 1.00 0.98 0.47 0.60 0.63 0.89 092 0.89 104 21.6



Nf Cache C Nr Lower

Lake Ca 11451500 39.02  -122.57 51 NW 197 1.30 0.96 0.52 0.60 0.60 0.74 0.71 0.72 0.9 0.4

Pena C Nr Geyserville Ca 11465150 38.70  -122.97 12 NW 22 1.00 0.99 0.30 0.60 1.23 091 0.97 0.89 0.0 0.7

Redwood C Nr Napa Ca 11458200 38.32  -122.35 15 NW 10 1.00 0.98 0.33 0.60 135 0.85 0.82 0.85 1.6 26.1

Russian R Nr Redwood

Valley Ca 11460940 39.32  -123.22 5 NW 14 1.00 0.95 0.10 0.20 391 0.72 0.90 0.72 0.4 1.2

Russian R Nr Ukiah Ca 11461000 39.20 -123.20 49 NW 100 1.00 0.97 0.38 0.40 1.64 0381 0.80 0.80 4.1 8.7

Sonoma C A Agua

Caliente Ca 11458500 38.32  -122.50 27 NW 58 1.00 0.98 0.45 0.60 132 0.90 0.89 0.90 7.1 17.3

Warm Springs C Nr Asti

Ca 11464860 38.70 -123.10 10 NW 12 1.00 0.97 0.40 0.60 1.73 0.90 0.99 0.90 0.0 0.0

Big C Ab Pine Flat Res Nr

Trimmer Ca 11220000 36.92  -119.25 20 SN 70 0.90 0.99 0.20 0.60 1.20 0.77 0.78 0.77 0.0 0.0

Big C Ab Whites Gulch

Nr Groveland Ca 11284400 37.84  -120.19 31 SN 16 1.00 0.98 0.52 0.70 1.60 0.88 0.94 0.85 0.3 0.0

Kings R Ab Nf Nr

Trimmer Ca 11213500 36.86  -119.13 53 SN 952 1.00 0.98 0.68 0.60 1.15 0.79 0.40 0.75 0.0 0.0

Merced R A Happy Isles

Bridge Nr Yosemite Ca 11264500 37.73  -119.56 84 SN 181 1.20 0.98 0.58 0.70 130 0.71 0.91 0.68 0.0 0.0

Merced R A Pohono

Bridge Nr Yosemite Ca 11266500 37.72  -119.67 83 SN 321 1.40 0.98 0.68 0.80 0.62 0.63 0.93 0.54 0.2 0.0

Nf Tuolumne R Nr Long

Barn Ca 11284700 38.10 -120.10 24 SN 23 1.20 0.98 0.58 0.70 0.95 0.18 0.77 0.00 2.9 0.0

Nf Willow C Nr Sugar

Pine Ca 11242400 37.40  -119.57 34 SN 17 1.00 0.98 0.48 0.70 183 0.79 0.93 0.79 0.0 0.0

Sf Kaweah R A Three

Rivers Ca 11210100 36.42  -118.92 32 SN 87 1.20 0.98 0.50 0.40 1.03 0.55 0.93 0.49 0.1 0.0

Guejito C Nr San

Pasqual Ca 11027000 33.12  -116.95 35 SwW 23 1.00 0.98 0.60 0.82 0.87 0.48 0.85 0.47 0.4 2.1

Los Penasquitos C Bl

Poway C Nr Poway Ca 11023330 3295 -117.07 24 SwW 31 1.00 0.98 0.50 0.50 2.85 0.88 0.72 0.86 48.2 2.3

San Diego R A Fashion

Valley At San Diego Ca 11023000 32.77  -117.17 18 SwW 429 1.00 0.98 0.65 0.75 0.40 0.82 0.30 0.75 726 0.0

San Diego R A Mast Rd

Nr Santee Ca 11022480 32.84  -117.03 86 SwW 368 1.00 0.97 0.65 0.75 033 0.83 0.36 0.75 19.6 1.7

Santa Maria C Nr

Ramona Ca 11028500 33.05 -116.95 61 SwW 58 1.00 0.98 0.40 0.70 1.00 0.93 0.84 0.00 241 17.5

Santa Ysabel C Nr

Ramona Ca 11025500 33.11  -116.87 68 SwW 112 1.00 0.97 0.56 0.85 0.41 0.48 0.73 0.40 0.6 0.8
mean 77 1.03 0.97 0.52 0.64 1.13 0.79 0.84 0.73 8.5 3.4

Validation basins
Antelope C Nr Tennant 11489500 4155  -121.92 27 CR 19 0.90 0.98 0.59 0.60 1.27 0.60 0.64 0.60 0.0 0.0



Ca
Cottonwood C A

Hornbrook Ca 11516600 41.92 -122.56 7 CR 90 1.00 0.98 0.40 0.60 1.55 0.48 0.80 0.43 1.5 0.6
Deer C Bl Slate C Nr

Deer Creek Meadows

Ca 11382550 40.23 -121.47 9 CR 69 1.00 0.99 0.64 0.70 1.50 0.12 0.63 0.05 0.1 0.0
Hat C Nr Hat Creek Ca 11355500 40.69 -121.43 68 CR 162 1.00 0.90 0.80 0.80 0.71 0.37 0.93 0.32 0.0 0.2
Little Shasta R Nr

Montague Ca 11516900 41.75 -122.30 21 CR 48 0.60 0.99 0.52 0.60 1.60 0.33 0.63 0.33 0.0 0.0
Pine C Nr Susanville Ca 10359300 40.66 -120.79 20 CR 226 1.00 0.99 0.40 0.30 0.48 0.28 0.61 0.19 0.0 0.0
Squaw C Ab Shasta Lk

Ca 11365500 40.86 -122.09 22 CR 64 1.00 0.97 0.55 0.60 3.60 0.73 0.61 0.71 0.0 0.0
Alamo C Nr Nipomo Ca 11137400 35.05 -120.30 20 CW 83 1.00 0.99 0.20 0.60 0.76 0.63 0.70 0.58 0.0 0.0
Arroyo Seco Nr

Greenfield Ca 11151870 36.24 -121.48 25 CwW 113 1.00 0.97 0.60 0.60 1.72 0.85 0.90 0.83 0.0 0.0
Big Sur R Nr Big Sur Ca 11143000 36.25 -121.77 50 Cw 47 1.00 0.97 0.70 0.60 1.40 0.82 0.82 0.77 0.1 0.0
Cantua C Nr Cantua

Creek Ca 11253310 36.40 -120.43 33 CcW 46 1.10 0.95 0.30 0.30 0.47 0.29 0.76 0.00 0.2 0.0
Estrella R Nr Estrella Ca 11148500 35.72 -120.64 42 CwW 922 1.00 0.99 0.30 0.60 0.54 0.69 0.76 0.61 0.3 3.1
Pescadero C Nr

Pescadero Ca 11162500 37.26  -122.33 49 CW 46 1.00 0.96 0.55 0.60 1.42 0.85 0.88 0.83 1.1 0.1
Sisquoc R Nr Sisquoc Ca 11138500 34.84  -120.17 57 CW 281 1.00 0.97 0.55 0.60 0.43 0.76 0.75 0.64 0.0 0.0
Sf Pit R Nr Likely Ca 11345500 41.23 -120.44 71 MP 247 1.30 0.93 0.60 0.60 2.65 0.64 0.41 0.59 0.0 0.2
Sprague River Near

Beatty Or 11497500 42.45 -121.24 38 MP 513 1.00 0.94 0.80 0.40 2.00 0.36 0.82 0.35 0.0 0.0
Sprague River Near

Chiloquin Or 11501000 42.58  -121.85 79 MP 1580 0.50 0.97 0.80 0.20 0.35 0.49 0.80 0.48 0.0 0.0
Sycan River Below

Snake Creek Nr Beatty

Or 11499100 42.49 -121.28 13 MP 568 1.00 0.97 0.80 0.50 0.48 0.64 091 0.64 0.0 0.0
Sycan River Near Beatty

Or 11499000 42.55 -121.32 9 MP 540 1.20 0.97 0.78 0.40 1.10 0.50 0.94 0.47 0.0 0.0
Williamson River Below

Sheep Creek Nr Lenz Or 11491400 42.91 -121.48 13 MP 205 1.00 0.96 0.70 0.60 0.22 0.52 0.48 0.41 0.0 0.0
Williamson River Near

Klamath Agency Or 11493500 42.74  -121.84 44 MP 1290 0.50 0.96 0.50 0.50 0.24 0.10 0.29 0.00 0.0 0.0
Wood River At Fort

Klamath Or 11504000 42.70 -121.99 18 MP 90 0.40 0.92 0.80 0.80 2.85 0.01 0.50 0.00 0.0 0.0
Beaver C Nr Klamath R

Ca 11517800 41.89 -122.82 5 NW 106 1.00 0.97 0.60 0.60 1.07 0.67 091 0.67 0.0 0.0
Blue C Nr Klamath Ca 11530300 41.45 -123.90 13 NW 120 1.00 0.97 0.63 0.60 1.86 0.86 0.89 0.86 0.0 0.0
Bluff C Nr Weitchpec Ca 11523050 41.24 -123.66 7 NW 75 1.00 0.96 0.62 0.60 2.61 0.86 0.58 0.86 0.1 0.0



Elk C Nr Happy Camp Ca 11522200 41.74 -123.36 8 NW 90 1.00 0.95 0.52 0.60 0.85 0.75 0.84 0.70 0.0 0.0
Grass Valley C A Fawn

Lodge Nr Lewiston Ca 11525600 40.68 -122.83 24 NW 31 1.00 0.96 0.60 0.60 0.72 0.76 0.80 0.70 0.1 0.0
Hayfork C Nr Hyampom

Ca 11528500 40.63 -123.44 21 NW 378 1.00 0.97 0.58 0.60 1.66 0.71 0.10 0.69 0.4 0.2
Indian C Nr Happy Camp

Ca 11521500 41.84 -123.38 43 NW 120 1.00 0.97 0.63 0.60 1.59 0.75 0.86 0.75 0.1 0.0
Mattole R Nr Petrolia Ca 11469000 40.31 -124.28 51 NW 245 1.00 0.96 0.51 0.40 3.50 0.72 0.69 0.72 0.2 0.2
Mf Cottonwood C Nr

Ono Ca 11374400 40.37 -122.57 19 NW 244 1.00 0.98 0.55 0.60 1.17 0.79 0.89 0.78 0.1 0.0
Napa R At Calistoga Ca 11455900 38.58 -122.58 8 NW 22 1.00 0.98 0.36 0.60 1.48 0.91 0.52 0.90 5.6 22.4
Navarro R Nr Navarro

Ca 11468000 39.17  -123.67 49 NW 303 1.00 0.96 0.46 0.60 3.32 0.77 0.71 0.77 0.3 1.9
Nf Cache C A Hough

Spring Nr Clearlake

Oaks Ca 11451100 39.17 -122.62 28 NW 60 1.00 0.98 0.50 0.60 1.68 0.80 0.83 0.80 0.0 0.0
Nf Stony C Nr Newville

Ca 11387800 39.78 -122.48 11 NW 63 1.00 0.98 0.32 0.60 1.00 0.88 0.90 0.88 0.1 0.1
Nf Trinity R A Helena Ca 11526500 40.78 -123.13 26 NW 151 1.00 0.97 0.57 0.60 1.68 0.59 0.88 0.46 0.0 0.0
Putah C Nr Guenoc Ca 11453500 38.78 -122.52 51 NW 113 1.00 0.97 0.45 0.60 1.93 0.87 0.80 0.87 4.5 6.1
Red Cap C Nr Orleans Ca 11523030 41.24  -123.55 7 NW 56 1.00 0.98 0.60 0.60 1.00 0.68 0.78 0.36 0.0 0.0
Redwood C A Orick Ca 11482500 41.30 -124.05 48 NW 277 1.00 0.96 0.46 0.50 4.45 0.69 0.68 0.69 0.1 0.0
Salmon R A Somes Bar

Ca 11522500 41.38 -123.48 76 NW 751 1.00 0.98 0.64 0.60 0.69 0.76 0.86 0.75 0.0 0.0
Scott R Nr FortJones Ca 11519500 41.64  -123.02 58 NW 653 1.00 0.96 0.52 0.60 173 0.79 0.55 0.78 0.4 8.0
Scotts C Nr Lakeport Ca 11449100 39.10 -122.96 20 NW 55 1.00 0.99 0.20 0.60 1.47 0.83 0.91 0.83 0.4 5.7
Sf Gualala R Nr

Annapolis Ca 11467500 38.70 -123.42 25 NW 161 1.00 0.98 0.51 0.60 1.70 0.90 0.77 0.90 0.2 0.5
Sf Salmon R Nr Forks Of

Salmon Ca 11522300 41.22  -123.25 8 NW 252 1.00 0.97 0.60 0.60 1.62 0.86 0.96 0.84 0.0 0.0
Sf Trinity R A Forest

Glen Ca 11528100 40.37 -123.33 6 NW 208 1.00 0.98 0.59 0.60 1.77 0.61 0.86 0.54 0.0 0.0
Trinity R Ab Coffee C Nr

Trinity Ctr Ca 11523200 41.11 -122.71 42 NW 149 1.00 0.96 0.60 0.60 222 0.34 0.84 0.23 0.2 0.0
Weaver C Nr Douglas

City Ca 11525800 40.67 -122.94 11 NW 48 1.00 0.97 0.48 0.60 1.73 0.71 0.67 0.70 3.0 0.0
Willow C Nr Willow CCa 11529800 40.95 -123.66 15 NW 41 1.00 0.97 0.55 0.60 2.90 0.65 0.72 0.65 0.0 0.0
Bell C Nr Pinecrest Ca 11283200 38.16 -119.94 16 SN 9 1.00 0.99 0.40 0.50 1.51 0.75 0.98 0.44 0.0 0.0
Clark Fork Stanislaus R

Nr Dardanelle Ca 11292500 38.36  -119.87 44 SN 68 1.00 0.98 0.64 0.50 1.24 0.83 0.92 0.82 0.0 0.0
Esperanza C Nr

Mokelumne Hill Ca 11307000 38.32 -120.60 9 SN 17 1.00 0.97 0.51 0.50 2.53 0.73 0.75 0.00 0.1 0.0



Golden Trout C Nr

Cartago Ca 11185300 36.37 -118.29 12 SN 24 1.00 0.97 0.73 0.30 0.57 091 0.80 0.42 0.0 0.0

Maxwell C A Coulterville

Ca 11269300 37.72 -120.19 20 SN 17 1.00 0.97 0.36 0.30 0.70 0.85 0.93 0.81 0.0 0.0

Miami C Nr Oakhurst Ca 11257100 37.39 -119.66 20 SN 11 1.00 0.95 0.60 0.50 0.72 0.84 0.93 0.70 0.0 0.0

Nf of Mf American R Nr

Foresthill Ca 11433260 39.02 -120.72 20 SN 89 1.00 0.98 0.59 0.60 2.00 0.75 0.98 0.73 0.0 0.0

Oak C Nr Mojave Ca 10264600 35.05 -118.36 29 SN 16 1.00 0.95 0.45 0.50 0.40 0.50 0.64 0.00 0.0 0.0

San Joaquin R A Miller

Crossing Ca 11226500 37.51 -119.20 47 SN 249 1.10 0.98 0.69 0.30 1.38 0.82 0.91 0.80 0.0 0.0

Wf Chowchilla R Nr

Mariposa Ca 11258900 37.42 -119.88 23 SN 34 1.20 0.97 0.36 0.30 1.14 0.84 0.93 0.83 1.0 0.0

Combined flow Falls C

Nr White Water + Div

Ca 10257501 33.87 -116.67 15 SwW 4 1.00 0.95 0.45 0.40 0.63 0.62 0.72 0.62 0.0 0.0

Cuyama R Nr Ventucopa

Ca 11136500 34.69 -119.36 14 Sw 90 1.00 0.97 0.60 0.40 0.27 0.53 0.69 0.48 0.1 0.7

Jamul C Nr Jamul Ca 11014000 32.64 -116.89 53 Sw 70 0.50 0.98 0.70 0.80 1.60 0.47 0.80 0.46 4.0 7.0

Little Rock C Nr Little

Rock Ca 10264000 34.46  -118.02 48 SwW 49 1.00 0.99 0.93 0.01 043 073 0.79 0.00 0.4 0.0

Malibu C At Crater

Camp Nr Calabasas Ca 11105500 34.08 -118.70 49 SW 105 1.00 0.98 0.45 0.30 0.93 0.75 0.86 0.68 26.9 1.1

Pine C Nr Palmdale Ca 10264530 34.60 -118.25 6 SwW 2 1.00 0.96 0.50 0.00 0.37 0.53 0.79 0.69 0.5 8.1

Reyes C Nr Ventucopa

Ca 11136480 34.69 -119.32 6 SW 5 1.00 0.97 0.38 040 1.72 0.76 0.85 0.76 0.0 0.0

San Gorgonio R A

Banning Ca 10256300 33.93 -116.83 1 SW 44 1.00 0.97 0.33 0.40 0.15 0.99 na 0.99 0.9 0.6

Snow C And Div

Combined Ca 10256501 33.87 -116.68 46 SwW 11 1.00 0.96 0.60 0.75 290 0381 0.85 0.76 0.1 0.0

Sweetwater R Nr

Descanso Ca.+ Div Ca 11015001 32.83 -116.62 21 SwW 45 1.50 0.94 0.30 0.20 0.31 0.70 0.86 0.44 3.3 0.8

Temecula C Nr Aguanga

Ca 11042400 3346  -116.92 42 SwW 131 1.00 0.97 0.77 0.80 0.30 0.79 0.81 0.78 1.8 2.8

Wagon Rd C Nr Stauffer

Ca 11136400 34.71 -119.21 6 SW 18 1.00 0.98 0.35 0.60 0.46 0.88 0.90 0.88 0.0 0.0
mean 188 0.98 0.97 0.55 0.53 139 0.67 0.77 0.59 0.83 1.01

Validation basins - Reconstructed unimpaired flows

Putah Creek 10 1,483 1.60 0.96 0.97 0.70 0.73 0.88 095 0.75 na na

Cache Creek 10 2,452 1.20 0.96 0.60 0.20 1.17 0.85 0.89 0.84 na na

Stony Creek 10 1,891 1.00 0.98 0.50 0.80 1.29 0.80 0.87 0.84 na na

Sac Valley West Side Minor Streams 10 679 1.00 0.99 0.54 0.60 3.59 0.52 0.58 0.52 na na

Sacramento River Near Red Bluff 10 24,868 2.80 0.95 0.85 0.50 0.79 0.53 0.95 0.57 na na



Sacramento Valley East Side Minor Streams 10 2,602 1.80 0.96 0.80 0.50 0.69 0.78 093 0.70 na na
Feather River near Oroville 10 9,326 1.40 0.97 0.78 0.78 098 0.54 0.87 0.51 na na
Yuba River at Smartville 10 3,220 1.00 0.99 0.65 040 1.20 0.73 0.95 0.68 na na
Bear River near Wheatland 10 596 1.10 0.96 0.60 0.50 1.37 0.87 091 0.76 na na
American River at Fair Oaks 10 4,817 1.00 0.99 0.60 0.50 1.56 0.78 0.94 0.74 na na
San Joaquin Valley East Side Minor Streams 10 4,771 1.00 0.95 0.50 0.80 1.76 0.69 0.83 0.56 na na
Cosumnes River at Michigan Bar 10 1,768 1.00 0.97 0.55 0.60 1.11 0.80 0.93 0.70 na na
Mokelumne River at Pardee Reservoir 10 1,384 1.00 0.99 0.60 0.40 1.46 0.79 0.98 0.69 na na
Calaveras River at Jenny Lind 10 866 1.05 0.97 0.55 040 134 0.89 094 0.83 na na
Stanislaus River at Melones Reservoir 10 2,553 1.00 1.00 0.66 0.60 1.23 0.79 0.98 0.71 na na
Tuolumne River at Don Pedro Reservoir 10 4,136 1.00 1.00 0.66 0.70 1.24 0.80 0.97 0.74 na na
Merced River at Exchequer Reservoir 10 2,617 1.00 0.99 0.58 0.40 1.08 0.81 0.96 0.68 na na
Chowchilla River at Buchanan Reservoir 10 725 1.05 0.96 0.58 0.70 0.89 0.86 0.96 0.69 na na
Fresno River near Daulton 10 887 1.00 0.96 0.60 0.60 0.72 0.83 0.95 0.68 na na
San Joaquin River at Millerton Reservoir 10 4,295 1.00 0.99 0.66 0.65 1.08 0.88 0.98 0.77 na na
San Joaquin Valley West Side Minor Streams 10 732 1.00 0.96 0.58 0.50 0.38 0.64 0.75 0.62 na na

mean 3,651 1.19 0.97 0.64 056 122 0.76 091 0.69

mean for all basins 598 1.03 0.97 0.55 0.58 1.25 0.73 0.82 0.67

* Jepson Ecoregions: CW, Central Western CA; NW, Northwestern CA; SN, Sierra Nevada; SW, Southwestern CA; CR, Cascade Ranges; CW, Central Western CA; MP, Modoc

Plateau

** Goodness-of-fit parameters: Monthly and yearly regression coefficient, r2; E, Nash-Sutcliff efficiency statistic.
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