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Abstract

Introduction: Estimating surface temperature from above-ground field measurements is important for
understanding the complex landscape patterns of plant seedling survival and establishment, processes which occur
at heights of only several centimeters. Currently, future climate models predict temperature at 2 m above ground,
leaving ground-surface microclimate not well characterized.

Methods: Using a network of field temperature sensors and climate models, a ground-surface temperature method
was used to estimate microclimate variability of minimum and maximum temperature. Temperature lapse rates
were derived from field temperature sensors and distributed across the landscape capturing differences in solar
radiation and cold air drainages modeled at a 30-m spatial resolution.

Results: The surface temperature estimation method used for this analysis successfully estimated minimum surface
temperatures on north-facing, south-facing, valley, and ridgeline topographic settings, and when compared to
measured temperatures yielded an R? of 0.88, 0.80, 0.88, and 0.80, respectively. Maximum surface temperatures
generally had slightly more spatial variability than minimum surface temperatures, resulting in R? values of 0.86,
0.77,0.72, and 0.79 for north-facing, south-facing, valley, and ridgeline topographic settings. Quasi-Poisson
regressions predicting recruitment of Quercus kelloggii (black oak) seedlings from temperature variables were
significantly improved using these estimates of surface temperature compared to air temperature modeled at 2 m.

Conclusion: Predicting minimum and maximum ground-surface temperatures using a downscaled climate model
coupled with temperature lapse rates estimated from field measurements provides a method for modeling
temperature effects on plant recruitment. Such methods could be applied to improve projections of species’ range
shifts under climate change. Areas of complex topography can provide intricate microclimates that may allow
species to redistribute locally as climate changes.
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Introduction

Microclimates at spatial scales of 1-1,000 m? are the cli-
mates experienced by individual plants and thus are crit-
ical determinants of plant species distributions that must
be considered when evaluating plant species vulnerabil-
ity to climate change (Ashcroft 2010; Dobrowski 2011;
Keppel et al. 2012; Rosenberg et al. 1983). The diversity
of microclimates that occurs in mountainous terrain
may allow a species to re-distribute locally under a chan-
ging climate, thereby buffering a species’ exposure to re-
gional climate change (Williams et al. 2008). Localized
refugia can also provide stepping-stone connectivity for
gene flow, dispersal and migration (Ackerly et al. 2010;
Davis and Shaw 2001; Williams et al. 2008).

Although topographically related microclimate vari-
ation has been extensively documented and analyzed,
spatially explicit modeling of mountain microclimates
remains an active area of research (Ashcroft and Gollan
2012; Vanwalleghem and Meentemeyer 2009), as does
research to better understand how microclimate vari-
ation is related to plant extinction risk under climate
change (Ackerly et al. 2010; Keppel et al. 2012; Randin
et al. 2009). One challenge lies in interpolating climate
values across rugged topography from sparsely distrib-
uted weather stations that are usually located in level,
open sites (Ashcroft and Gollan 2012). A second chal-
lenge is estimating the microclimate near the ground
surface from weather station measurements typically
collected 2 m or more above the ground surface. Many
organisms, including plant seedlings, live on or near the
ground surface where temperature variation can be
much greater than the variation at 2 m (Kearney and
Porter 2009; Rosenberg et al. 1983). A third challenge is
that for most plant species we lack knowledge of which
aspects of microclimate are most important in control-
ling initial establishment, growth or reproduction.

In this study we are concerned with modeling fine-
scale variation of air temperatures close to the ground
surface and relating that variation to tree seedling re-
cruitment in mountain landscapes. The study is part of
a larger multi-year project integrating climate model
downscaling, microclimate measurement and modeling,
experimental studies of tree seedling recruitment, and
spatially explicit plant population models to link micro-
scale ecological processes to macro-scale species range
dynamics under climate change (Davis and Sweet 2012).
Our study region is in California, where hot and dry sum-
mer conditions associated with the Mediterranean climate
regime place strong abiotic controls on tree seedling es-
tablishment and sapling survival, and may factor import-
antly into population dynamics and species distributions
(Gomez-Aparicio et al. 2008; Zavala et al. 2000). Seedlings
must establish an adequate root system to survive a long sum-
mer drought (Mahall et al. 2009), and surface temperatures
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near the ground can be lethally hot for small-stemmed
seedlings (Kolb and Robberecht 1996). For light-loving
tree species, recruitment of new individuals occurs in
clearings created by wildfires or other disturbances, and
the microclimates in such clearings can be especially ex-
treme and under strong topographic influence compared
to forested sites (Chen et al. 1999; Ma et al. 2010). Thus,
microclimate may influence seedling abundance and dis-
tribution differently or more so than is the case for adult
trees (Collins and Carson 2004; Tsujino and Yumoto
2007), depending on the scale of study (Stohlgren et al.
1998), and this topic is therefore particularly relevant to
the study of plant species recruitment. Studies of seedling
response to abiotic and biotic conditions will be key to
predicting range shifts, as populations may shift via seed-
ling establishment into new areas with climate change
(Lenoir et al. 2009).

We describe and test an approach for modeling land-
scape variation in an important microclimate variable—
maximum daily near-ground surface temperatures—based
on air temperature profiles measured in the field, 30-m
grids of modeled monthly solar insolation, and coarse
(4-km) spatial grids of air temperatures 2 m above the
surface. We then relate average maximum daily tempera-
tures to seedling recruitment (germination + survival to
end-of-summer) data from experimental field trials to
produce a seedling thermal niche model for California
black oak (Quercus kelloggii). We apply our near-ground
surface temperature model to map that seedling niche
across a study landscape in the southern Sierra Nevada.
Our results illustrate both the potential to model fine-scale
near-ground surface temperature variation and the import-
ance of doing so in order to describe spatial variation in
seedling establishment across mountain landscapes.

Methods

Study area

We are measuring microclimate and tree seedling re-
cruitment in foothill and montane sites in two neighbor-
ing ecoregions and seed zones, the southern Sierra
Nevada and the western Tehachapi Mountains in California
(Figure 1). Our Sierran sites comprise the San Joaquin Ex-
perimental Range (37°5'N, 119°43°W, 210-520 m ele-
vation, www.fs.fed.us/psw/ef/san_joaquin) and Teakettle
Experimental Forest (36°58 N, 119°1"W, 2,000-2,800 m,
www.fs.fed.us/psw/ef/teakettle). Our Tehachapi sites com-
prise landscapes at low (34°59°N, 118°43"W, 750-930 m)
and high (34°58°N, 118°35"W, 1,600—1,700 m) elevations
on the Tejon Ranch.

We tested our microclimate downscaling approach at
Teakettle Experimental Forest. The average annual pre-
cipitation here is 110 cm and falls predominantly in the
winter months as snow (North et al. 2002). Over the
period 1971-2000, the mean daily minimum temperature
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Figure 1 Location map of project study sites in California, USA. Temperature data recorded across the Teakettle landscape were partitioned into
two categories, modeled data and verified data. The modeled data sensors were used to calculate lapse rates needed for estimating surface temperature
from 17 individual locations. Verified data were collected at 29 separate locations to estimate the accuracy of the landscape surface temperature model.

San Joaquin Experimental Rangeland !
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— | S
| Tejon Ranch Foothill/Montane Sites

during January was —-3.6°C and the mean maximum daily
temperature in August was 24°C (PRISM Climate Group
2012). The forest primarily consists of mixed-conifer
species, with occasional black oak (Quercus kelloggii). Na-
tive conifer species at lower elevations include white fir
(Abies concolor), sugar pine (Pinus lambertiana), incense
cedar (Calocedrus decurrens), and Jeffrey pine (Pinus
jeffreyi). Species such as red fir (Abies magnifica), lodge-
pole pine (Pinus contorta), and western white pine (Pinus
monticola) increase in abundance at higher elevations on
the site (North et al. 2002).

Microclimate measurements

At the Teakettle Experimental Forest we set up 17 indi-
vidual temperature sampling locations for calibration and
29 temperature sampling locations for verification using

HOBO® (Onset, www.onsetcomp.com) data loggers to
record temperature every 10 minutes beginning in August
2011. A dense array of 21 temperature sensors at 0.05 m
above ground was installed in a circular area 20 m in ra-
dius centered on each 5 x 5 m common garden (described
below; associated plant species planted together in another
environment). We deliberately sampled at high density to
ensure accurate estimation of mean near-ground surface
temperatures at these sites for calibration or validation of
30-m downscaled climate models. At each of six garden
sites, the sensor in the center was used for calibration and
the surrounding 20 sensors were used for validation by
averaging them into a monthly value of minimum and
maximum temperature. An additional 29 temperature re-
cording locations were allocated across the landscape
(hereafter, “landscape” sensors or locations) to capture
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temperature variation related to hillslope orientation and
valley drainages (Figure 1). Of these 29 landscape sensors,
12 were used for calibration and the remaining 17 were
used for validation. At each experimental garden and at
several landscape locations, a stack of sensors recorded
temperature at three vertical distances above the ground
surface: 4, 2, and 0.05 m or 3, 1, and 0.05 m. One of these
two vertical arrangements of temperature sensors was used
to record temperature at each site and estimate the lapse
rate by adjusting the z-term, the height of recorded
temperature. We shielded the thermocouples (sensor
used to measure temperature) at 0.05 and 1 m from di-
rect sunlight by suspending them inside inverted white
styrene funnels 10 cm in diameter. Thermocouples at 2
and 4 m heights were suspended in Onset RS3 solar
radiation shields. The data loggers were tested in a climate-
controlled cold storage room prior to deployment. Quality
assurance and quality control methods from the National
Oceanic and Atmospheric Administration (NOAA) Me-
teorological Assimilation Data Ingest System (MADIS)
were used to filter out data that may have resulted from
sensor drift or spiking (http://madis.noaa.gov/madis_gqc.
html). Where there were inadequate data for the month
due to sensor failure, data from that sensor were not used.
Spatial autocorrelation among the temperature sam-
pling locations was evaluated for dispersion and cluster-
ing patterns with respect to distance using Ripley’s K
function with 99 permutations (Bailey and Gatrell 1995;
Boots and Getis 1988). To determine the degree of auto-
correlation occurring at Teakettle among recorded tem-
peratures, the residuals of the near-ground surface
temperature (Campbell) predicted from measured near-
ground surface temperature (validation data) were calcu-
lated. Moran’s I was used to test if these residuals were
autocorrelated across Teakettle, that is, if they were
spatially clustered or statistically considered random,
suggesting the sampling locations could be treated as in-
dependent observations (Getis and Ord 1992).

Modeling the air temperature profile near the ground surface
We modeled the vertical temperature profile near the
ground using the equation from Campbell and Norman
(1998, p. 20), which is based on the theory of turbulent
heat transport and assumes a uniform surface with steady-
state conditions. Equation 1 from Campbell and Norman
(1998) was used to estimate coefficients needed to fit the
temperature profile at each of the 17 temperature record-
ing locations with a vertical mast containing the three
temperature sensors (as described above):

H 74

T(z) =To———
(2) 0 0.4pc,u* " ZH

(1)

where T(z) is the estimated temperature at height z above
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the soil surface, Ty is the surface temperature, H is the
sensible heat flux from the surface to the air, pc, is the
volumetric specific heat of air (1,200 ] m™ C™ at 20°C
and sea level), and 0.4 is von Karman’s constant, u* is
the frictional velocity, d = 0.6/, where / is the vegeta-
tion height, and zy ~ 0.02/, a roughness parameter for
heat transfer.

We applied this model using the vertical temperature
records to solve a system of three equations containing
three unknown variables: ground-surface temperature
(Ty), lapse rate [A = H/(0.4pc,u*)], and vegetation
height (%). First, & was estimated across a range of
values ranging from 0 to 10 cm with an interval of 1
mm, and for each value of / we then solved for A and
Ty, providing different estimates in temperature for
each / value. The best estimates of %, A, and T, were
selected using a third temperature measurement by
matching the predicted temperature with the observed
temperature at the highest measurement height.

Downscaling regional climate grids

We applied Equation 1 to model monthly averages
of minimum and maximum temperature aggregated
from daily measurements near the ground sur-
face using 4-km resolution temperature grids ob-
tained from the PRISM Climate Group, Oregon State
University (http://prism.oregonstate.edu). The 4-km
grids were downscaled to 30 m using a two-stage
downscaling process, first downscaling to 800 m and
then from 800 m to 30 m using digital elevation
models (DEM) with 4-km, 800-m, and 30-m spatial
resolutions. The downscaling method, which is de-
scribed in detail by Flint and Flint (2012), fits local
climate gradients using multiple regression models to
predict temperature or rainfall from elevation along
bi-directional (north to south and east to west) gradi-
ents and weights the regression estimate for new lo-
cations using inverse-distance-squared weighting of
values from the coarser grid.

The PRISM Climate Group produces 4-km monthly
grids of average minimum and maximum temperature
by interpolating weather station temperature measure-
ments using a weighted regression approach based
on location, elevation, coastal proximity, topographic
orientation, and other terrain effects (Daly et al. 2008).
Given that the temperature measurements are typically
collected at 2 m above the surface, we treat our down-
scaled PRISM temperature grids as modeled tempera-
tures at a height of 2 m.

To derive 30-m grids of monthly minimum and max-
imum temperatures at the ground surface, we applied
our estimated lapse rates for 17 locations using the fol-
lowing relationship, a rearrangement and simplification
of Equation 1:
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To = TPRISM —i—Alnﬂ (2)
ZH

where T is the monthly estimate for either minimum or
maximum ground surface temperature, Tprisy is the esti-
mated monthly minimum or maximum temperature at z =
2 m above ground obtained from the 30-m downscaled
PRISM grid for that month, A is the monthly lapse rate av-
eraged across 18 measurement locations, and z, d, and zyy
are as defined above (Equation 1).

To estimate monthly minimum and maximum tem-
peratures near the ground surface at a height of 0.05 m,
we applied the following equation, a rearrangement of
Equation 2:

T(0.05) = To-Aln>% (3)
ZH
where T(0.05) is the monthly estimate for either mini-
mum or maximum surface temperature at z = 0.05 m,
Ty is as determined from Equation 2, and A, d, and zy
are as defined above (Equations 1 and 2).

We only considered snow-free months (September
and October 2011 and May through September 2012),
given that temperature sensors buried under snow
recorded a constant temperature of approximately 0°C.
We would have also included October 2012, but we
had incomplete field temperature data for this month.
Equations 2 and 3 assume that monthly lapse rates are
uniform across the landscape. We expected that lapse
rates could vary systematically on more open south-
facing slopes and ridges than in canyons and north-
facing slopes due to differences in surface thermal prop-
erties, local airflow patterns, daytime heating from solar
radiation, and other systematic terrain effects. To refine
our lapse rate estimates for modeling maximum monthly
temperatures, we adjusted local lapse rates based on
least-squares linear regression of lapse rates as a func-
tion of solar radiation. Modeled solar radiation was used
to estimate only maximum near-ground surface temper-
atures and not minimum temperatures due to the vari-
ability in solar heating among aspects during the day
from the sun’s thermal energy. Grids of monthly clear-
sky solar radiation were calculated as described in Flint
and Childs (1987). Their solar model accounts for both
direct and diffuse radiation and is based on solar geom-
etry, local slope angle and azimuth, and shading effects
of surrounding ridges. Average daily radiation load was
calculated by summing instantaneous radiation for 360
integration points per day, with 10° resolution of the
horizon for modeling shading from surrounding ridges.

Our monthly near-ground surface temperature models
were verified using independent surface temperature
measurements from 29 sampling locations. A least-
squares regression analysis was used to compare how
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well the predicted model temperatures match those of
the independent observed measured temperatures.

Recruitment of Quercus kelloggii seedlings
We are studying the relationship of tree recruitment to
microclimate at 24 common gardens (6 gardens at each
of 4 sites). We located gardens in clearings to mimic
post-disturbance site conditions in two south-facing, two
north-facing, and two valley topographic settings longer
than 40 m across. Gardens were planted in the autumn
(2011) prior to snowfall: in October at Teakettle and the
Tehachapi high-elevation site, in November at the
Tehachapi low-elevation site, and in December at the
San Joaquin site. Jute netting was used to stabilize bare
soil surfaces created during garden installation in order
to reduce erosion and possible displacement of seeds.
Quercus kelloggii (black oak) seed was collected from
the USDA Forest Service seed zone 533 containing Tea-
kettle Experimental Forest and from zone 570 in the
Tehachapi Mountains. Acorns were collected by hand in
October 2011 from at least ten wild trees in each zone.
Seeds were gathered directly from the trees and the
ground, excluding seeds that were partially predated,
damaged, or appeared desiccated and those that could
not be detached from the cupule easily. After collection,
the seeds were placed into plastic containers with perlite
to prevent molding. Seeds collected at different locations
within a zone were combined and mixed to ensure a
consistent population-level sample when selected for
planting in the gardens. Seed was stored in Ziploc® bags
of perlite in groups of 50, first at 15°C and then changed
to 4°C after 1 week (to suppress germination and arrest
mold development). Bags of seed were monitored for
mold and decay until planted in the common gardens.
In late October 2011, 25 Q. kelloggii plots were planted
in a randomized complete block design in each of two
replicate mono-specific plots (0.5 x 1 m) as part of the
larger common garden experiment. Within the plots,
seeds were planted in a grid design, 10 cm apart (50
seeds per plot), just beneath the soil surface. Measure-
ments of height and basal diameter were made in June
and August for all emerged seedlings. Recruitment was
calculated as the number of seedlings alive in August.
The relationships between seedling recruitment (num-
ber surviving in August 2012) and temperature variables
were fitted using quasi-Poisson Generalized Linear Mo-
dels (R Core Team 2012). A quasi-Poisson model was
used because the mean was greater than the variance in
our recruitment data. Several temperature variables were
tested to investigate which monthly maximum tempera-
tures were most correlated with seedling recruitment, and
results are shown for July average maximum temperature
because this time period may include lethal temperatures
and occurred just prior to the mid-August assessment of
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seedling recruitment. To evaluate the difference in sig-
nificance of coefficients and variance explained from
modeling temperature regimes near the ground versus
at 2 m, we estimated and compared two simple GLMs
based on observed maximum temperatures at 0.05 and
2 m above the ground surface. We fit a second-order
polynomial for the temperature predictor because it
captures the hypothesized unimodal shape of the
temperature response curve over the range of measured
temperatures in the garden experiment (Austin 2002).
The dismo library (Hijmans et al. 2012) was used to
apply the resulting GLMs to 30-m resolution grids of
modeled maximum near-ground surface temperatures
at 0.05 and 2 m height. Maps created using ArcScene
(ESRI, www.esri.com) show these distribution models of
predicted Q. kelloggii seedling recruitment.

Results

Observed minimum and maximum temperatures

Peak maximum temperatures of 47°C were recorded on
July 9th near the soil surface on south-facing slopes at
Teakettle (Figure 2). Summer daytime maximum tem-
peratures were typically 8—12°C higher at 0.05 m than
at 2 m at the same location (Figure 2). Maximum daily
temperatures at 0.05 m were ~2°C warmer on south-
facing slopes and in valleys compared to those on
north-facing slopes (Figure 2). At 2 m, maximum tem-
peratures were relatively spatially uniform across the
landscape (Figure 2).
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Site-wide estimates of near-surface lapse rates for
monthly maximum temperature averaged 1.20°C, but esti-
mates varied considerably by month, ranging from 0.10 to
1.36°C. Steepest lapse rates were generally recorded dur-
ing summer months. Lapse rates also varied considerably
among sites and at the same site between years (Table 1).

Compared to maximum daily temperatures, minimum
daily temperatures during the summer were much more
uniform across the landscape and the lapse rates were
closer to zero (Figure 3, Table 2). Mid-summer minimum
temperatures ranged from 5.8 to 15.6°C and were not sig-
nificantly different at 0.05 vs. 2 m above the soil surface
for north-facing slopes or valleys. South-facing slopes
were 0.75-1.5°C warmer at 2 m above the ground surface
compared to elsewhere on the landscape, often being the
warmest areas of minimum temperature (Figure 3). Site-
wide average lapse rate for monthly minimum tempe-
rature for all 7 months was approximately 0.15°C, ranging
from 0.12 to 0.16°C. Lapse rates did not vary systema-
tically with respect to topography, but lapse rates at
individual locations tended to be consistently higher or
consistently lower than site-wide averages.

Modeled landscape variation of near-ground

surface temperature

Downscaled 30-m grids of predicted monthly minimum
temperatures at 2 m above the ground surface were
strongly correlated with observed minimum near-ground
surface temperatures (Table 3). Similarly, estimates of
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Figure 2 Representative daily mean maximum temperatures for the Teakettle Watershed study site during July 2012. Daily mean
maximum temperatures at 0.05 m (dashed lines) and 2 m (solid lines) are from three experimental gardens including north-facing (blue),
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Table 1 Estimated monthly averages of near-ground surface lapse rates (A in Equations 2 and 3; °C) used to model the
vertical profile of maximum monthly temperatures at the Teakettle Experimental Watershed for September-October

2011 and May-September 2012

Location Topographic position Sep-11 Oct-11 May-12 Jun-12 Jul-12 Aug-12 Sep-12 Average
N1 North slope - - - - 1.59 1.53 1.01 -
N2 North slope 1.20 0.76 1.14 1.38 1.50 1.66 1.74 1.34
N3 North slope 0.56 0.09 1.22 1.38 124 1.39 0.72 0.94
N4 North slope 1.80 .11 - - - - - -
N5 North slope 0.32 0.12 - 0.34 - - - -
N-average North slope 097 0.52 1.18 1.03 144 1.52 1.16 112
R1 Ridge 0.12 0.31 - - - - - 0.21
S1 South slope - - - - 1.87 1.66 1.98 -

S2 South slope 1.10 0.78 0.86 1.33 1.20 1.16 1.03 1.07
S3 South slope 0.60 0.17 1.76 1.82 - - 145 -

S4 South slope 123 0.60 142 0.62 - - - -

S5 South slope 1.31 162 - - - - -
S-average South slope 097 0.52 1.18 1.03 144 1.52 1.16 1.12
V1 Valley - - - - 144 132 1.36 -
V2 Valley 0.69 0.02 1.18 1.61 143 141 1.34 1.10
V3 Valley 0.76 031 0.99 145 1.63 1.17 163 1.14
V4 Valley 1.21 0.89 1.76 2.15 - - - -

V5 Valley 117 0.79 1.67 1.85 - - - -

G Valley - - - - 246 233 207 229
V-average Valley 0.96 0.50 140 1.76 1.74 1.56 1.60 1.36

Dash marks represent months with incomplete data for that sensor.

minimum daily near-ground surface temperatures were
strongly correlated (R*> = 0.80) with observed variation
across all topographic settings (Table 3). Model predictive
capacity was greatest for valleys (R*> =0.88) (Table 3). In
general, observed minimum temperatures recorded in the
field were found to be colder than modeled near-ground
surface minimum temperatures by approximately 0.83°C.
Estimated monthly maximum temperature lapse rates
were positively correlated with monthly solar radiation,
with steepest lapse rates observed at locations receiving
the highest insolation (R* = 0.34, Figure 4). Downscaled
30-m grids of PRISM monthly maximum temperatures at
2 m above the ground surface were, as expected, not well
correlated with, and systematically cooler than, recorded
maximum temperatures at 0.05 m height (R2 = 0.61,
Table 3). The relationship improved after applying
Equations 2 and 3 to the downscaled PRISM grids using
site-wide monthly estimates of A (R*> = 0.73) and was
slightly further improved by adjusting lapse rate based on
monthly insolation (R*> = 0.75). Overall, the model was
best at predicting temperature along north-facing slopes
(R* = 0.86, Table 3). Accuracy in terms of mean absolute
error between modeled and observed temperatures was
1.63°C for minimum and 3.57°C for maximum temperatures

(Table 4). The progression of modeled monthly maximum
surface temperatures for September-October 2011 and
May-September 2012 is shown for the Teakettle Water-
shed study (Figure 5); hottest surface conditions across
the landscape are predicted to have occurred in August
and on south-facing slopes.

While evaluating spatial autocorrelation among the
temperature sampling locations using Ripleys K func-
tion, we found the sampled pattern of temperature to be
spatially random, falling within a 95% confidence enve-
lope. The observed K function with respect to distance
was neither clustered nor dispersed. The residuals, cal-
culated as the difference between the predicted and
measured near-ground surface temperatures, were not
spatially clustered in any of the seven months. Moran’s /
for model residuals ranged from -1.02 for October 2011
to 0.05 in September 2011. P-values fell between 0.22
and 0.88, suggesting that residuals calculated for each
month were neither significantly dispersed nor clustered.

Observed and modeled seedling recruitment

Maximum July temperature at 0.05 m (near the ground
surface) explained more variance in recruitment than
temperature measured at 2 m above the ground surface
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Figure 3 Representative daily mean minimum temperatures for the Teakettle Watershed study site during July 2012. Daily mean
minimum temperatures at 0.05 m (dashed lines) and 2 m (solid lines) are from three experimental gardens including north-facing (blue),
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(adjusted R* of 0.63 versus 0.41 respectively; Table 5).
Further, the estimated parameters were larger in magnitude
and were significant (at a significance level of alpha =
0.05) for the model based on 0.05 m temperature mea-
surements, versus 2 m (Table 5). The response curve
estimated for the temperature variable measured near
the ground also more completely characterized the
optimum and upper and lower limits of tolerance than
the curve estimated from 2 m data (Figure 6).

A predictive map of seedling recruitment as a func-
tion of July maximum temperature, generated by ap-
plying the quasi-Poisson regression model to the 2-m
gridded temperature dataset, shows a very smooth re-
cruitment surface with moderately high predicted re-
cruitment even in the upper elevation limits of the
study area (Figure 7a). The map generated using the
model of recruitment based on the 0.05 m tem-
perature data shows greater topographic variation in
modeled black oak seedling recruitment and generally
lower recruitment probability, especially at the upper
elevations of Teakettle, and higher predicted recruit-
ment in the lower elevation areas surrounding the
study area (Figure 7b).

Discussion

Evaluation of landscape-scale near-ground surface
temperature estimation

Modeling and estimating temperatures near the ground
surface has been important in understanding micro-
refugia and assessing species vulnerability to rising global
temperatures (Fridley 2009). Other studies have deployed
a dense grid of temperature sensors to record fine-scale
variability across the landscape among different topo-
graphic settings capturing the influence of nearby
streams, soil moisture, solar insolation, and vegetation
cover (Ashcroft 2010). Maps of surface temperatures have
then been produced based on statistical or geostatistical
modeling (Vanwalleghem and Meentemeyer 2009; Ashcroft
and Gollan 2012). We have used a different approach
that combines spatial downscaling of monthly PRISM
data to produce 30-m grids of air temperatures at 2 m,
followed by calculation of near-ground surface tem-
peratures using the observed temperature lapse rates
and modeled solar insolation. The Campbell and Nor-
man model used to estimate near-ground surface tem-
perature is based on a comprehensive model of surface
energy balance often used in climate forecasting to
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Table 2 Estimated monthly averages of near-ground surface lapse rates (°C) used to model the vertical profile of
minimum monthly temperatures at the Teakettle Experimental Watershed for September-October 2011 and May-

September 2012

Location Topographic position Sep-11 Oct-11 May-12 Jun-12 Jul-12 Aug-12 Sep-12 Average
N1 North slope - - - —-0.04 -0.05 -0.06 -

N2 North slope =01 -0.19 -0.08 -0.08 -0.11 -0.12 -0.12 -0.12
N3 North slope -0.07 -0.06 -0.19 -0.02 -0.04 -0.04 -0.04 -0.07
N4 North slope -0.16 -0.12 - - - - -

N5 North slope -0.64 -0.58 -0.29 - - - -
N-average North slope -0.25 -0.24 -0.14 -0.13 -0.06 -0.07 -0.07 -0.14
R1 Ridge -0.12 -0.12 - - - - -0.12
S1 South slope - - - -0.29 -027 -0.32 -

S2 South slope -0.13 -0.09 -0.14 -0.11 -0.12 -0.01 -0.15 -0.11
S3 South slope -003 -0.02 -0.21 -0.04 - - 0.00 -

S4 South slope -0.25 -0.23 -0.18 -0.19 - - - -

S5 South slope -0.13 -0.37 - - - - -
S-average South slope —-0.25 -0.24 -0.14 -0.13 -0.06 -0.07 -0.07 -0.14
V1 Valley - - - -0.24 -0.28 -0.27 -

V2 Valley -0.16 -0.16 -0.10 -0.12 -0.16 -0.17 -0.17 -0.15
V3 Valley —-0.09 -0.07 -005 -0.07 —-0.08 -0.08 —-0.08 -0.07
V4 Valley -0.16 -0.07 -0.11 -0.10 - - - -

V5 Valley - - -048 -0.63 - - - -

V6 Valley - - - -0.11 -0.13 -0.11 -0.12
V-average Valley -0.14 -0.10 -0.18 -0.23 -0.15 -0.17 -0.16 -0.16

Dash marks represent months with incomplete data for that sensor.

estimate surface heat fluxes (e.g., Holtslag and Van
Ulden 1983).

Our findings demonstrate that landscape-scale estima-
tion of minimum and maximum near-ground surface
temperature is feasible through the combination of down-
scaled conventional climate datasets, vertical temperature
profile interpolation methods, and field calibration data.
Accuracy in terms of mean absolute error between mod-
eled and observed temperatures was generally better
for minimum than maximum temperatures, likely due to

greater fine-scale variability in maximum temperature
lapse rates. Lapse rates calculated from field temperature
sensors varied more, spatially and temporally, for monthly
maximum near-ground surface temperature than for
minimum near-ground surface temperature. Maximum
near-ground surface temperature is highly heteroge-
neous and varies not only by topographic aspect and
slope steepness, but is further complicated by soil and
ground cover albedo, which absorbs or reflects solar ra-
diation. Furthermore, gaps in canopy cover attenuate

Table 3 Squared correlation coefficients (R?) between PRISM and observed (HOBO) minimum and maximum
temperatures (°C) and between observed and estimated minimum and maximum surface temperatures using various

lapse rate estimation methods

Analysis All aspects North South Valley Ridgeline
Minimum temperature

PRISM vs. HOBO 0.82 0.80 0.75 0.88 0.86
HOBO vs. average lapse rate 0.80 0.79 0.75 0.88 0.86
Maximum temperature

PRISM vs. HOBO 0.60 0.72 0.59 0.55 0.75
HOBO vs. average lapse rate 0.68 0.82 0.76 0.62 0.72
HOBO vs. regressed solar lapse rate 0.69 0.81 0.76 0.59 0.77

n: north: 18, south: 30, valley: 21, ridgeline: 18, total: 87.

Analysis points consisted of paired comparisons between monthly temperature datasets.
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solar radiation before it reaches the ground causing dif-
ferences in surface temperatures (Fridley 2009).

Model accuracy was highest on north-facing slopes. Al-
though Dobrowski (2011) reported that aspect has little
direct effect on minimum temperature, the increased solar
radiation on south-facing slopes and ridgelines may inter-
act with the dry soil conditions during summer months at
Teakettle and promote stronger divergence from the re-
gional temperature patterns characterized in large-scale
climate datasets. The ridgeline regions at Teakettle make
up a relatively small area compared to other sampled land-
scapes. Consequently, we had only one temperature re-
cording location that captured ridgeline variability, making
it more difficult to estimate near-ground surface tempera-
tures along mountain ridges. Locally, north-facing slopes

experience the smallest amount of solar radiation and
the most canopy shading and, therefore, the narrowest
fluctuations in temperature and lapse rates compared
to the other sites. To better understand patterns of
near-ground surface temperatures in mountainous re-
gions we plan to add temperature recording stations
that capture the vertical temperature profile at our
other three other research sites, San Joaquin Experi-
mental Range and Tehachapi low and high elevation
landscapes. With these additional temperature record-
ing sites, near-ground surface temperature models will
support models of tree seedling recruitment in all pro-
ject study areas, allowing us to better link topographic-
ally influenced micro-scale climate to macro-scale tree
species range dynamics.

Table 4 Mean absolute error between PRISM and observed (HOBO) minimum and maximum temperatures (°C) and between
observed and estimated minimum and maximum surface temperatures using various lapse rate estimation methods

Analysis All aspects North South Valley Ridgeline
Minimum temperature

PRISM vs. HOBO 1.59 1.58 144 124 2.24
HOBO vs. average lapse rate 1.63 1.58 1.66 1.20 215
Maximum temperature

PRISM vs. HOBO 9.92 748 1047 961 11.80
HOBO vs. average lapse rate 382 1.92 422 455 418
HOBO vs. regressed solar lapse rate 357 1.92 362 4.71 379

n: north: 18, south: 30, valley: 21, ridgeline: 18, total: 87.

Analysis points consisted of paired comparisons between monthly temperature datasets.
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Figure 5 Modeled mean daily maximum temperatures for the Teakettle Watershed study site, September-October 2011 and May-
September 2012, based on 4-km PRISM data that were downscaled to 30 m and extrapolated from 2 m to 0.05 m above the soil
surface using lapse rates calculated from Equations 2 and 3 and then adjusted based on modeled solar radiation.

Numerous studies have shown that including topo-
graphically based variables to account for cold air pooling,
particularly those pertaining to water drainage and accu-
mulation, improves estimation of temperature across the
landscape (Lookingbill and Urban 2003; Lundquist et al.
2008; Dobrowski et al. 2009). Bigg et al. (2012) demon-
strated that cold air pooling occurs throughout the year
and is strongest and most frequent during summer and
autumn in a study of the Peak District of central England.
Notably, these cold air pooling events occurred at small
scales, approximately 0.5-1 km. In mountainous land-
scapes such as Teakettle, knowledge of small-scale pat-
terns of cold air pooling could enable spatial predictions
of climate refugia, which in this case would act as small
sanctuaries decoupled from regional climate regimes for
more cold-adapted species (Daly et al. 2010).

Implications for species distribution modeling
Landscape-scale estimation of near-ground surface tem-
peratures makes possible microclimate modeling for
plant seedlings or other species that experience climate
at the ground surface. Plant seedlings must endure the
surface level microclimate to become established indi-
viduals, meaning exposure to considerably warmer tem-
peratures than those that are found at just a couple of
meters above ground. Conventional climate datasets
(e.g., PRISM) based on mean maximum temperatures
measured at 2 m insufficiently represent the magnitude
and variability of maximum temperatures at the ground
surface. Furthermore, hot and cold temperature spikes
may be lethal to certain species during critical life stages,
but inadequately described within mean temperature
datasets (Bateman et al. 2012; Reyer et al. 2013) regard-
less of temperature measurement height. Use of such
datasets to predict distributions of species that experi-
ence ground surface microclimate could produce mis-
leading results and misinform management strategies.
In the case of the black oak, for a seedling to survive
the first growing season, several ecophysiological require-
ments must be met: acorns require thermal stratification
(Burns et al. 1990); adequate moisture and temperatures

must occur in the springtime for germination and emer-
gence from the soil; enough nutrients and light energy
must be available for growth beyond seed stores; and
seedlings must survive possible late frosts or lethally hot
surface temperatures during a long summer drought
period. As a direct (e.g., thermal energy for chemical pro-
cesses; lethal stem temperatures) or indirect (proxy for
soil drydown) driver, it stands to reason that July maxi-
mum temperature would be an important predictive vari-
able in oak recruitment. Although black oak has been
studied in silvicultural settings (e.g., McDonald 1978), and
foundational research by Griffin (1971) documented life
history traits such as seed set and germination and differ-
ences in seedling emergence in foothill woodland micro-
habitats, the literature on black oak seedling ecology is
not extensive (Tyler et al. 2006). Our results are consist-
ent with prior findings, including those of Standiford
et al. (1991), that solar radiation (which covaries with
slope-aspect and temperature) is a significant factor in
explaining the probability of seedling regeneration.

Our experiment underscores the importance of near-
ground surface temperatures for black oak seedling re-
cruitment (Figure 7). Species distribution models (Franklin
2010) generally map suitable habitat for adult indi-
viduals of species, but it cannot be assumed that juve-
niles establish and survive under the same conditions
(Ibanez et al. 2007; Jackson et al. 2009; McLaughlin and
Zavaleta 2012), nor that the spatial distribution of suit-
able microhabitats for juveniles across landscapes is the
same as that of adults.

Conclusions

Our study demonstrates the importance of including
ground surface microclimate in predicting future species
distributions in response to climate change. Montane
landscapes contain considerable microclimatic variability
that could provide important refugia for species threat-
ened by climate change. Refugia are often identified as
areas of overlapping suitable habitat between existing and
projected future species distributions or sometimes as
areas outside current suitable habitat that are expected to

Table 5 Summary of results of simple quasi-Poisson GLMs of number of Quercus kelloggii seedlings recruited (response
variable) as a quadratic function of July average maximum temperature measured at two heights (temp. height)

Temp. height Parm poly1 P (poly1) Parm poly 2 P (poly2) Adj R? Dispers parm
0.05 m 5431 0.021 —-0.070 0.018 063 3.90
2m 2661 0359 -0.053 0313 042 763

Parm poly1 is the estimated parameter for the linear term of the temperature variable, and parm poly2 is the estimated parameter for the squared term. P() are
the probabilities that those terms are not significantly different from zero. Dispers parm is the dispersal parameter of the quasi-Poisson model.
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predicted by measured average July daily maximum temperature at all study sites (a) 2 m and (b) 0.05 m above the soil surface.
Fitted lines are from 2nd-order polynomial quasi-Poisson GLMs based on number of recruits as the response variable. Abbreviations: TEF,
Teakettle Experimental Forest; SJER, San Joaquin Experimental Range; TRF, Tejon Ranch Foothill site; TRM, Tejon Ranch Montane site.
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become suitable in the future (e.g., Franklin et al. 2013).
The concept of climate change refugia has drawn atten-
tion in recent discussions of conservation responses
to climate change (Ashcroft 2010; Keppel et al. 2012;
Keppel and Wardell-Johnson 2012). Yet despite this at-
tention, the role of climate-species relationships during
early life stages in identifying and conserving potential
refugia has received insufficient consideration due to
the common assumption that climate-species relation-
ships are static throughout the lives of individuals
(McLaughlin and Zavaleta 2012 is an exception). There-
fore, conservation of plant species under climate change
could depend on our ability to model the responses of
species to ground-surface microclimate. This study rep-
resents a step forward in both modeling ground-surface
microclimate at relatively fine scales and understanding
how this fine-scale variability may influence plant seed-
ling survival and govern landscape and regional patterns
of future species distributions.

Climate models, such as PRISM, that are based on
temperature measured at 2 m above the ground surface
require estimated lapse rates if they are to be used to
model ground-surface temperature. Temperatures near
the ground surface tend to be more extreme and hetero-
geneous than above-ground temperatures due to the dif-
ferences in albedo, soil moisture, and vegetation density
near the ground. Having a network of temperature sen-
sors that capture the vertical temperature profile and are
distributed among different topographic settings allows
us to better understand microclimate variability with re-
spect to near-ground surface temperature.

Modeling tree species recruitment as a function of
near-ground surface temperature provided insight on
how a species might establish across the landscape with
respect to fine-scale microclimate variability. Modeling
maximum temperatures at the ground surface, a poten-
tially harsh environment that acts as a fine filter through
which tree seedlings must pass to establish successfully,

a
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L

Figure 7 Distribution models of the seedling thermal recruitment niche for Q. kelloggii for Teakettle Experimental Watershed
predicted by applying quasi-Poisson GLMs to 30-m grids of modeled July maximum temperatures at (a) 2 m and (b) 0.05 m.




Dingman et al. Ecological Processes 2013, 2:30
http://www.ecologicalprocesses.com/content/2/1/30

can better explain the heterogeneity found in the re-
cruitment pattern of black oak compared to traditional
temperature measurements made at 2 m above the
ground surface.
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